设a1,a2,a3线性无关,证明a1-a2,a2+a3,a3-a1也线性无关
举一反三
- 设向量组a1,a2,a3的r(a1,a2,a3)=3,a4能由a1,a2,a3线性表示,a5不能由a1,a2,a3线性表示,则r(a1-a2,a2,a3-a1,a5-a4)= 。 A: 1 B: 2 C: 3 D: 4
- 设向量组a1,a2,a3线性无关,则下列向量组中线性无关的是() A: a1,a2,a1+a3 B: a1-a2,a2-a3,a3-a1 C: a1,a2,2a1-3a2 D: a2,2a3,2a2+a3
- 设α1,α2,α3线性无关,β1可由α1,α2,α3线性表示,β2不可由α1,α2,α3线性表示,对任意的常数k有______. A: α1,α2,α3,kβ1+β2线性无关 B: α1,α2,α3,kβ1+β2线性相关 C: α1,α2,α3,β1+kβ2线性无关 D: α1,α2,α3,β1+kβ2线性相关
- 设向量组α1,α2,α3,α4线性无关,则向量组( ). A: α1+α2,α2+α3,α3+α1,α4+α1线性无关 B: α1—α2,α2—α3,α3+α4,α4—α1线性无关 C: α1+α2,α2+α3,α3+α4,α4—α1线性无关 D: α1+α2,α2+α3,α3—α4,α4—α1线性无关
- 设向量α1,α2,α2线性无关,向量β1可由α1,α2,α3线性表示,向量β2不能由α1,α2,α3线性表示,则对任意常数k,必有______. A: α1,α2,α3,kβ1+β2线性无关 B: α1,α2,α3,kβ1+β2线性相关 C: α1,α2,α3,β1+kβ2线性无关 D: α1,α2,α3,β1+kβ2线性相关