举一反三
- 比较以下两方法求 [tex=6.286x1.143]WFt418DiXjBBVYUAaYtCgLCFD5OfWGWjcXtwT7yPxak=[/tex]的根到三位小数所需的计算量.(1) 在区间[tex=2.0x1.357]pL+9s9nh77uX8/Gl5SRykA==[/tex]内用二分法;(2) 用迭代法 [tex=8.0x1.357]MgO1w1JZfUIXH7jRB46CBxr76PBI5BkTNyjrk7BVSHoCzGxU4lZw28VyuoTx3Tzs[/tex] 取初值 [tex=2.5x1.214]PbxQuu2oJUyEaV2dwxIlqw==[/tex]
- 求下列不定积分.[tex=7.286x2.643]28VI4S//fW038PiMAbBHktfj3FfJYocy4+TgcP5gH+6DCjcL5MVe5w4GLCJx2oaC[/tex].腺 由于 $\sin ^{4} x+\cos ^{4} x=\left(\cos ^{2} x-\sin ^{2} x\right)^{2}+2 \sin ^{2} x \cos ^{2} x$$=\cos ^{2} 2 x+\frac{1}{2} \sin ^{2} 2 x$原式 $=\int \frac{\mathrm{d} x}{\cos ^{2} 2 x+\frac{1}{2} \sin ^{2} 2 x}$
- 有容量分别为[tex=3.286x1.286]pCZ+fPe3X5XtlIcXCf6RGw==[/tex]和[tex=3.286x1.286]JjWMjbwalVPPThZBywJsLQ==[/tex]的独立随机样本得到下述观测结果, (X、 Y为观测值, f为频数)X 12.3 12.5 12.8 13.0 13.5 Y 12.2 12.3 13.0f 1 2 4 2 1 f 6 8 2现已知变量X、Y的总体均呈正态分布。请问在0.05的显著性水平下,可否认为这两个总体属同一分布?[tex=24.786x1.286]OVWwFMgiPzBDnRSqBYypUv4puOxaqZVbzeGoYhEt/ZwiQxP0kGgAAWuaJInyBhH09xLkSWqB6n3qd1WXaKpfvwUNfmmVSMJTzi4wz4IT6q4=[/tex][tex=8.429x1.286]AcUD6cTXhAghaQMem3GRbFMfFVpZHcyA3tP0z+S7RAk=[/tex] [tex=13.357x1.357]ZPe8nXNlBeMmW2cEA+D6DaqP/loFbcVH2QukDH1SMofLM6E74nDyl0WrH8imm/Ai[/tex]
- 求函数[tex=3.286x1.429]kdT+eIE7CHPynuN6CaN40g==[/tex](抛物线)隐函数的导数[tex=1.071x1.429]BUw1BPFU3fsJlAl/vt9M9w==[/tex]当x=2与y=4及当x=2与y=0时,[tex=0.786x1.357]Hq6bf3CacUy07X+VImUMaA==[/tex]等于什么?
- [tex=2.214x1.0]Z8GWW72u+MH/mjafnp+83A==[/tex]丙酮酸经过丙酮酸脱氢酶系和柠檬酸循环产生[tex=4.0x1.214]EPDWVFNjIR8daNoozaWRDg==[/tex],生成的[tex=3.214x1.0]1AqDCKqjaAug6buHS5Z0tQ==[/tex]、[tex=3.429x1.214]HYAn2+I9AZQLWcA3ajoPaw==[/tex]和[tex=2.143x1.0]qQANfGnLx7pE5mcaEibuNg==[/tex](或[tex=2.071x1.0]YGdeb/NAM7yg+XY6SY16Fg==[/tex])的摩尔比是( )。 未知类型:{'options': ['3:2:0', '4:2:1', '4:1:1', '3:1:1', '2: 2:2'], 'type': 102}
内容
- 0
求下列函数的导函数:(1) [tex=5.0x2.357]X/CieCDGJ7iPQ3YFWuscHxHrcIE/dPFa9tFyiJXze8A=[/tex](2)[tex=6.643x1.714]Oj74y/L+OxY81QME5JWMcl+7PZ2FGQswwvjgVhjq1Dmb6dBU0oAjZBW7eFBVjqo6[/tex]
- 1
对于以下两种情形:(1)x为自变量,(2)x为中间变量,求函数[tex=2.214x1.214]sy9gaFRMGlrH59gm9bWSDg==[/tex]的[tex=1.5x1.429]5W5tOYbJ+LlsRP2dMsi4byxwtjvvL/3u7NEzPV5PWp0=[/tex]
- 2
产品[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]和[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex]是互补品。需求函数;[br][/br]$Q_{X}=640-4 P_{X}-P_{Y}, \quad Q_{Y}=\frac{1}{2} Q_{X}-\frac{1}{2} P_{Y}$\ \假定两者短期供给是固定的:[br][/br][tex=7.571x1.214]CfZnuLHqwTFF3JM+8Dj0b8jBQ/cIxAsLu6pTzTLTHBE=[/tex]求:这两种产品的均衡价格为多少?
- 3
【单选题】设X为连续型随机变量, 其概率密度: f(x)=Ax2, x∈(0,2); 其它为0. 求(1)A=(); (2) 分布函数F(x)=(); (3) P{1<X<2} (10.0分) A. (1)3/8; (2)x<0, F(x)=0; 0≤x<2, F(x)=1/8x³; x≥2, F(x)=1; (3) 7/8 B. (1)5/8; (2)x<0, F(x)=0; 0≤x<2, F(x)=1/8x³; x≥2, F(x)=0 (3) 1/8
- 4
用简单迭代法求下列方程的根,并验证收敛性条件,精确至 [tex=0.5x1.0]gHMbUA0oVdAA3pW6qwPDjw==[/tex] 位有效数字。1) [tex=4.929x1.357]Lt1qdkIcbJ6rvLY8Oy70OA==[/tex];3) [tex=8.714x1.357]yElsQvRghZUYucdNW9lleb62QloKzE+BwXgdLeUt2xI=[/tex];2) [tex=4.071x1.143]n1ZRctYcuGPiF0Ch511gMA==[/tex];4) [tex=4.429x1.357]kfg2XKfjtAAAOTX+FVYxbnFOvGl/iIp+at+IrmA5XVI=[/tex].