• 2022-06-09
    为求方程[tex=5.286x1.357]b8x+HIwVGc7xahsEc9sRcMwUXiUKdVGGev6C0crMcuc=[/tex] 在[tex=3.0x1.214]B/6HLbSvKNiAc4VhjvdhHw==[/tex] 附近的一个根, 现将方程改为下列的等价形式, 且建立相应的迭代公式:试分析每一种迭代公式的收敛性, 任选一种收敛的迭代公式计算 [tex=1.286x1.0]i/VcY7by/UxU03MsbHMszg==[/tex] 附近的根,要求 [tex=7.643x1.5]CgjGqoj5LTjOyOUbU0Yf6nUap8hRmHtad4yqKuzw0UqxfdyXhiYBjHRkm+f9wGyS[/tex](1)[tex=4.5x2.643]X/zRiovTJ2A4Y4O3BztulSAZJhaxY3gKFSdEkvP/E2o=[/tex]迭代公式为[tex=5.714x2.643]SsPHz67ILR0/gXxhPHaAV2M/meVDLtmeQOLfDdr+zQdN8qx5KIPuVSpkx8Z9PI7n[/tex][br][/br](2)[tex=4.0x1.357]3KozVi1zSecNbmBdM5I+tg==[/tex], 迭代公式为 [tex=7.5x1.786]gkt8+lpxBz0cxz/b0vEf9IOaor7rQ8C18FWT9teuO39dsxSY08VQKlGH2df2XsBj[/tex](3)[tex=4.5x2.429]9L65CAyapskLso2zyy29Qvx3CKlajEyON+mihjqaAQU=[/tex]$迭代公式为 [tex=7.571x2.857]8WsLWWUtkwFAlCmH+3u/xSQi/dF/4Fz53PjI03BJFP6XREvE8vDVlLZxD56Sg0Y0ztYsGB4+fhAN2IEQMwYj4w==[/tex]
  • 举一反三