证明:设[tex=2.5x1.143]TiKXNJpck7QZybOVpHjBBQ==[/tex],则(1)[tex=4.071x1.357]XuP7RmUEJaAkHVU8iAv+9Q==[/tex];(2)[tex=4.214x1.357]AqKFQ399rus+wrghQrqZ2w==[/tex];(3)[tex=6.714x1.5]88w0pH97sf309OJM2l0ulfXdE4LOhDA5RyW64p7MDoY=[/tex]。[br][/br]
举一反三
- 设f(x)具有性质:[tex=8.571x1.357]8gPeznjMnng12qtkk9Vgczii1Sh4d1qJxc9iHYT5+YI=[/tex]证明:必有f(0)=0,[tex=5.5x1.357]rt5qCY7TXHcsFUQrD44nPA==[/tex](p为任意正整数)
- (1)若[tex=6.714x2.643]HAFmghCxhVjDugagN7AdBCsxNb/S0qrLYqWSkSibKUw=[/tex],[tex=4.429x1.214]M6UPYoezKqaZY1gUDuz6wg==[/tex], 则[tex=10.214x2.429]kD803vtlkypFOBFWPml50htCrIFAkCE+J5AkwXdV9zxvsK8WLlo4+JquCHEpAbSg[/tex][br][/br](2)若[tex=11.714x2.643]StZ9E2nb7lqiV+ifxPtI7kOkgEEFUaS57IXqv9GfD9JM3Le9Wzxp7rqfMlTg5ffN[/tex]则当[tex=4.429x1.286]kDYQ0ZvUqEjp9b0R+cg2cw==[/tex] 时, 有[br][/br][tex=11.286x2.643]2sVi0FvWEkVgWBa3acS1/3FKeyY4o6Gr2XhX1cifoYRf+ZGdnRrJ0Kz+bAP6U/VMhP9TDr+b31ZLet3+i7m0aQ==[/tex][tex=8.071x2.429]4IyV94iPDdLbQBUOHXjpBtF0vpqGR0IAg2n3pk1lsTE=[/tex] [tex=9.071x2.643]rcP9TNml4j8xMWwxGGWtBvmaQicKnSfcn+HThrp2Gp4dUHs4Sh5WTm/RsplIEX/w[/tex][tex=8.071x2.429]pp0DA6qIjM6WaIucouOvAXEAB1N2vHbPXaxy4Lwaklk=[/tex][tex=6.786x1.357]JXrwkQvCMRwh+ZVvMY4feTeWyMoD1LzOnZai/Zsh4Qc=[/tex]由(1)(2)计算 [tex=4.857x2.643]t4XYGFjAgTwQ5Qkt2abPq5ZkWilqyozsEtRh91jTu4c=[/tex]
- 6个顶点11条边的所有非同构的连通的简单非平面图有[tex=2.143x2.429]iP+B62/T05A6ZTM0eeaWiQ==[/tex]个,其中有[tex=2.143x2.429]ndZSw3zT0QTOVLVdoUto1Q==[/tex]个含子图[tex=1.786x1.286]J+vVZa2YaMpc6mJBbqVvWw==[/tex],有[tex=2.143x2.429]lmhx48evnQMhi03NovPXig==[/tex]个含与[tex=1.214x1.214]kFXZ1uR8GjycbJx+Ts2kyQ==[/tex]同胚的子图。供选择的答案[tex=3.071x1.214]3KinXFh3SXhZ7nIe1y9KEV6aadxhhJWeEy6Dij1iObdMUZkY6ZA5J2dVVjPSuhEf[/tex]:(1) 1 ;(2) 2 ;(3) 3 ; (4) 4 ;(5) 5 ;(6) 6 ; (7) 7 ; (8) 8 。
- 产品[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]和[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex]是互补品。需求函数;[br][/br]$Q_{X}=640-4 P_{X}-P_{Y}, \quad Q_{Y}=\frac{1}{2} Q_{X}-\frac{1}{2} P_{Y}$\ \假定两者短期供给是固定的:[br][/br][tex=7.571x1.214]CfZnuLHqwTFF3JM+8Dj0b8jBQ/cIxAsLu6pTzTLTHBE=[/tex]求:这两种产品的均衡价格为多少?
- 设[tex=5.214x1.214]l2vYijvwphpA0Bdo8olvNhKvOVd4RCELKut0jj6S5qs=[/tex]是连续映射,Y是Hausdorff空间,证明:(1)集合[tex=9.357x1.357]QCqopxinhs+TvVYgLw48vVpO4x/Rie4gzAlmw62rJGM=[/tex]是X的闭子集;(2)如果A是X的稠密子集且[tex=3.714x1.357]fo4X83uQk0aLKgSpBjpSMw8oj58YdJ5bCiu5d4gfWQqZvgjwV7CYEcyqXJHmRmoq[/tex],则f=g。