an=√n+2(√n+1-√n-1)
举一反三
- 当$|z|<0.5$时左边序列$x[n]$为 A: $[(\frac{1}{2})^n-2^n]u[-n-1]$ B: $[(\frac{1}{2})^n+2^n]u[-n-1]$ C: $[2^n-(\frac{1}{2})^n]u[-n-1]$ D: $[2^n+(-\frac{1}{2})^n]u[-n-1]$
- 【单选题】以基因型为 Aa 的植株作为亲本,连续自交 n 次得到 Fn ,在 Fn 中基因型为 AA 、 aa 、 Aa 的个体所占比例依次为 A. 1/2-(1/2) n+1 、 1/2-(1/2) n+1 、 1/2 n B. 1/2-(1/2) n 、 1/2-(1/2) n 、 1/2 n C. 1/2-(1/2) n 、 1/2-(1/2) n 、 1/2 n D. 1/2-(1/2) n-1 、 1/2-(1/2) n+1 、 1/2 n E. 1/2-(1/2) n-1 、 1/2-(1/2) n+1 、 1/2 n F. 1/2-(1/2) n-1 、 1/2-(1/2) n-1 、 1/2 n-1 G. 1/2-(1/2) n-1 、 1/2-(1/2) n-1 、 1/2 n-1 H. 1/2-(1/2) n 、 1/2-(1/2) n 、 1/2 n I. 1/2-(1/2) n-1 、 1/2-(1/2) n+1 、 1/2 n J. 1/2-(1/2) n-1 、 1/2-(1/2) n-1 、 1/2 n-1
- 计算lim(n→∞)(1^n+2^n+3^n)^(1/n)
- 用δ(n)及其延迟项表示序列x(n)={2, -3 , 4,1},结果为( ) A: x(n)=2δ(n)-3δ(n-1)+4δ(n-2)+δ(n-3 B: x(n)=2δ(n-1)-3δ(n)+4δ(n+1)+δ(n+2) C: x(n)=2δ(n+1)-3δ(n)+4δ(n-1)+δ(n-2) D: x(n)=2δ(n)-3δ(n+1)+4δ(n+2)+δ(n+3)
- 已知离散信号如图所示,则f(n)也可表示为() A: 2δ(n)+5δ(n+1)+4δ(n+2) B: 2δ(n)-5δ(n+1)-4δ(n+2) C: 2δ(n)+5δ(n-1)+4δ(n-2) D: 2δ(n)-5δ(n-1)-4δ(n-2)