• 2022-06-08
    设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]为[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]阶可逆方阵,[tex=0.857x1.0]m2DKAQtGuc1DyN3zyNlILg==[/tex]为[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex]阶方阵,[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]为[tex=2.714x1.071]SNxXYAaYx37iafNT85z0Sw==[/tex]矩阵,[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]为[tex=2.714x1.071]319e/AVA5VexfWBQXpJ9ug==[/tex]矩阵,计算[tex=12.929x2.929]075gCzZzsMRb6HYXYk9X9+eBdLDqbmUEu2KUTzjlgkuUGS8OqJ1+VQD5AwCfWW5Oh+ttOtcykVqe2Swu/G7ZjGLxJ6321IJJF6JOMHGJymVoQLxeKTfA0+qanuyboR3FgwTrfxWHgHYBUzPQK3Os920Gz8YqaTKLW+gWHvR2QFL6t/3EToDpkcb9tSXbB0tf[/tex],并由此证明[tex=5.214x2.786]Uyz5s0rmQIddjb5Jc2T/YRd9exX63872DgLG3it+eRA4jyxpzsJs9AO2ePRWjqmQDggj+MURaDlh7cVVx1CQeA==[/tex][tex=7.5x1.571]zPKe+irtJL6+ZQZLAuDPEKYE3Sq3Fc4B5BTuFPsCgQXtn9Eanod3/BR80OcH6BxR[/tex] .
  • 解     按矩阵的分块乘法运算[tex=13.929x2.929]075gCzZzsMRb6HYXYk9X9+eBdLDqbmUEu2KUTzjlgkuUGS8OqJ1+VQD5AwCfWW5Oh+ttOtcykVqe2Swu/G7ZjGLxJ6321IJJF6JOMHGJymVoQLxeKTfA0+qanuyboR3FgwTrfxWHgHYBUzPQK3Os920Gz8YqaTKLW+gWHvR2QFLNh7SPf3Gd8PglfQsxY4uL[/tex][tex=9.0x2.786]075gCzZzsMRb6HYXYk9X95kRVu8uC53M4GzJAyDYYELfAM/g9CT/iHk+cVNS8MGdblZg2RNFRswKweMB+T1JjgcyXzuVU+LKHxCHBiVPr/U=[/tex],两边取行列式,得[tex=12.714x2.929]Uyz5s0rmQIddjb5Jc2T/Ycq8GinNjhZcpaU/ssmoMuoM5wx3ZnBuXBdLQpLZpIqWSTbl/ukgEVq7fFjCiHp6JZxXDuWLYmZHHetlJVo0ZPuPcLnUhDb3S06BlbK/YwUxvQiphz27jlcd/9AAhZTz9PL/qWttkVzxKHzwI5f/Jr2WtOn+hLFIIpg9CLTAjikg[/tex][tex=8.214x2.786]Uyz5s0rmQIddjb5Jc2T/Yci6U6EFJtrr0pPiRvVIe3f+I+9H5fIkQrtJGRL9SUwSpgZSMFz5B3A7jxSRxGO7sau6nHxntIrjQy5m3EGZ/gc=[/tex],由[tex=7.857x2.929]Uyz5s0rmQIddjb5Jc2T/Ycq8GinNjhZcpaU/ssmoMuoM5wx3ZnBuXBdLQpLZpIqWGHeC1f9h7nXWwRM3hU0+JuSaz34mey29XpEV35mW2iY=[/tex][tex=5.0x1.357]ZhKq27ZZ6BjUWkJa5ixdvXBLqSfRVaT5FjquikRJ1t8Eq4uzstZVgq8luvXZSztk5Ln5NpOH0yzcbtSzyuH4iA==[/tex],[tex=9.143x2.786]Uyz5s0rmQIddjb5Jc2T/Yci6U6EFJtrr0pPiRvVIe3f+I+9H5fIkQrtJGRL9SUwSpgZSMFz5B3A7jxSRxGO7sbXLw/rs8ZifBXPohKuQ33c=[/tex][tex=7.5x1.571]zPKe+irtJL6+ZQZLAuDPEKYE3Sq3Fc4B5BTuFPsCgQXtn9Eanod3/BR80OcH6BxR[/tex],既得所证。

    举一反三

    内容

    • 0

      求解下列矩阵对策,其中赢得矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为$\left[\begin{array}{llll}2 & 7 & 2 & 1 \\ 2 & 2 & 3 & 4 \\ 3 & 5 & 4 & 4 \\ 2 & 3 & 1 & 6\end{array}\right]$

    • 1

      ‌下面说法错误的是( )。‌‌知识点:列表推导式‌ A: dict([(x, x**2) for x in range(6)]) 创建的字典是{0: 0, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25} B: [[x*3+y for y in range(1,4)] for x in range(3)] 创建的是二维列表 [[1, 2, 3], [4, 5, 6], [7, 8, 9]] C: number = [-2, 4, 6, -5]string = 'ab'z = [(i, j) if i>0 else (-i, j) for i in number for j in string]这段代码创建的列表为[(2, 'a'), (2, 'b'), (4, 'a'), (4, 'b'), (6, 'a'), (6, 'b'), (5, 'a'), (5, 'b')] D: ' '.join([i for i in range(1,11)])的运算结果为字符串'1 2 3 4 5 6 7 8 9 10'

    • 2

      A=[1 2 3 4 5 6 7 8 9]A(5)=[]A=1 4 7 5 8 3 6 9

    • 3

      【阅读理解(选择)/完型填空】基于以下描述回答 1-2 题: 下表是 9 名评委对 10 名学生的毕业设计进行等级评定结果: 评委 A B C D E F G H I J 1 1 2 4 3 9 6 5 8 7 10 2 1 4 2 5 6 7 3 10 8 9 3 1 3 4 5 2 8 9 6 10 7 4 1 3 4 5 2 6 10 8 7 9 5 1 9 2 5 6 3 4 8 10 7 6 1 4 9 2 5 6 7 3 10 8 7 1 3 5 10 2 6 9 7 8 4 8 1 3 5 7 6 4 8 10 2 9 9 1 2 8 4 9 6 3 7 5 10

    • 4

      以下程序段实现的输出是()。for(i=0;i<;=9;i++)s[i]=i;for(i=9;i>;=0;i--)printf("%2d",s[i]);[/i][/i] A: 9 7 5 3 1 B: 1 3 5 7 9 C: 9 8 7 6 5 4 3 2 1 0 D: 0 1 2 3 4 5 6 7 8 9