图示结构$F_{\mathrm QC}$影响线($F_{\mathrm P}=1$在$BE$上移动)在$BC$、$CD$段竖标为( )。
举一反三
- 图示梁${F_{\mathrm RA}}$的影响线与${F_{\mathrm RA \rm 右}}$的影响线相同。( )
- 图示结构[img=23x17]17e0b20ea2b323f.jpg[/img]影响线(F=1在BE移动)BC、CD段纵标为:[img=288x148]17e0b20ead8335d.jpg[/img] A: BCD均不为零 B: BCD均为零 C: BC为零,CD不为零 D: BC不为零,CD为零
- 连续型随机变量 $X$ 的密度函数为 $f(x)$ ,则 $X$ 的取值落在区间 $(a,b]$ 上的概率 $P\{a A: $\int_{-\infty}^a f(x)\mathrm d x$ B: $\int_{-\infty}^b f(x)\mathrm d x$ C: $\int_{a}^b f(x)\mathrm d x$ D: $\int_{a}^{+\infty} f(x)\mathrm d x$
- 二维连续型随机变量 $(X,Y)$ 的概率密度函数为 $f(x,y)$ 满足的性质有( ). A: $f(x,y)\ge 0$ B: $\int_0^{+\infty}\int_0^{+\infty}f(x,y)\mathrm d x\mathrm d y=\displaystyle\frac{1}{2}$ C: $\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}f(x,y)\mathrm d x\mathrm d y=1$ D: $\int_0^{+\infty}\int_0^{+\infty}f(x,y)\mathrm d x\mathrm d y=1$
- 二维连续型随机变量 $(X,Y)$ 的分布函数 $F(x,y)$ 、密度函数 $f(x,y)$ 及概率之间的关系正确的有( ). A: $F(x,y)=P\{X\le x,Y\le y\}$ B: $F(x,y)=\int^x_{-\infty}\int^y_{-\infty}f(s,t)\mathrm d s\mathrm d t$ C: $F(x,y)=\int_x^{+\infty}\int_y^{+\infty}f(s,t)\mathrm d s\mathrm d t$ D: $P\{(x,y)\in D\}=\displaystyle\iint_D f(x,y)\mathrm d x\mathrm d y$