设A={1,2,3,4,5,6},B={1,2,3},从A到B的关系R={<;x,y>;|x=2y},则关系R=。
举一反三
- 设A={1,2,3,4,5,6},B={1,2,3},从A到B的关系R={〈x,y〉|x=y2},求R和R-1的关系矩阵。
- 设A={1,2,3,4,5,6},B={1,2,3},从A到B的关系R={〈x,y〉|x=2y},求(1)R (2) R-1
- 设A={1, 2, 3},B={1, 2, 3, 4},A到B的关系R={〈x, y〉|x=y},则R为 ( ) A: {<1, 2>, <2, 3>} B: {<1, 1>, <1, 2>, <1, 3>, <1, 4>, <1, 5>} C: {<1, 1>, <2, 1>} D: {<1, 1>, <2, 2>, <3, 3 >}
- 设 A={1,2,3,4,5,6},B={1,2,3},从A到B的关系R={﹤x,y﹥∣x=2y},则R= 。
- 设A=,且A的特征值为1,2,3,则有() A: x=2,y=4,z=8 B: x=-1,y=4,z∈R C: x=-2,y=2,z∈R D: x=-1,y=4,z=3