函数z=ln(1 x2 y2)当x=1, y=2时的全微分dz= .
1/3dx+2/3dy;
举一反三
- 函数z=ln(1 x2 y2)当x=1, y=2时的全微分dz= .
- 函数\(z = {x^y}\)的全微分为 A: \(dz = y{x^{y - 1}}dy + {x^y}\ln xdx\) B: \(dz = y{x^{y - 1}}dx + {x^y}dy\) C: \(dz = y{x^{y - 1}}dx + {x^y}\ln xdy\) D: \(dz = y{x^{y - 1}}dy + {x^y}dx\)
- 函数z=exy当x=1, y=1, Dx=0.15, Dy=0.1时的全微分dz= .
- 函数\(z = \ln \left( { { x^2} + {y^2}} \right)\)在\(x = 2,y = 1\)时的全微分为 A: \(0.8dx+0.4dy\) B: \(0.8dx-0.4dy\) C: \(8dx+4dy\) D: \(8dx-4dy\)
- 4.已知二元函数$z(x,y)$满足方程$\frac{{{\partial }^{2}}z}{\partial x\partial y}=x+y$,并且$z(x,0)=x,z(0,y)={{y}^{2}}$,则$z(x,y)=$( ) A: $\frac{1}{2}({{x}^{2}}y-x{{y}^{2}})+{{y}^{2}}+x$ B: $\frac{1}{2}({{x}^{2}}{{y}^{2}}+xy)+{{y}^{2}}+x$ C: ${{x}^{2}}{{y}^{2}}+{{y}^{2}}+x$ D: $\frac{1}{2}({{x}^{2}}y+x{{y}^{2}})+{{y}^{2}}+x$
内容
- 0
求函数y=x2当x=2,△x=0.02时的微分
- 1
函数z=e^y/x全微分dz=
- 2
集合A={x,y,z},B={1,2,3},试说明下列A到B的二元关系中,哪些能构成函数 A: {(x,1),(x,2),(y,1),(z,3)} B: {(x,1),(y,1),(z,1)} C: {(x,2),(y,3)} D: {(x,3),(y,2),(z,3),(y,3)} E: {(x,2),(y,1),(z,2)}
- 3
已知x=1,y=2,z=3,执行下列语句if(x>y) z=x;x=y;y=z;则x,y,z的值分别是 A: x=1,y=2,z=3 B: x=2,y=3,z=1 C: x=2,y=2,z=1 D: x=2,y=3,z=3
- 4
函数y=ln(2 - x - x2)的连续区间为( ) A: (-1,2) B: (-2,1) C: (- ∞,1)∪(- ∞,1) D: (- ∞,-2)∪(1,+∞)