函数\(z = \ln \left( { { x^2} + {y^2}} \right)\)在\(x = 2,y = 1\)时的全微分为
A: \(0.8dx+0.4dy\)
B: \(0.8dx-0.4dy\)
C: \(8dx+4dy\)
D: \(8dx-4dy\)
A: \(0.8dx+0.4dy\)
B: \(0.8dx-0.4dy\)
C: \(8dx+4dy\)
D: \(8dx-4dy\)
举一反三
- 函数\(z = {x^y}\)的全微分为 A: \(dz = y{x^{y - 1}}dy + {x^y}\ln xdx\) B: \(dz = y{x^{y - 1}}dx + {x^y}dy\) C: \(dz = y{x^{y - 1}}dx + {x^y}\ln xdy\) D: \(dz = y{x^{y - 1}}dy + {x^y}dx\)
- 函数\(z = {\left( {xy} \right)^x}\)的全微分为 A: \(dz = \left( { { {\left( {xy} \right)}^x} + \ln xy} \right)dx + x{\left( {xy} \right)^x}dy\) B: \(dz = \left( { { {\left( {xy} \right)}^x} + \ln xy} \right)dx + { { x { { \left( {xy} \right)}^x}} \over y}dy\) C: \(dz = {\left( {xy} \right)^x}\ln xydx + { { x { { \left( {xy} \right)}^x}} \over y}dy\) D: \(dz = {\left( {xy} \right)^x}\left( {1 + \ln xy} \right)dx + { { x { { \left( {xy} \right)}^x}} \over y}dy\)
- 已知\( y = {x^2} + 4x \),则\( dy \)为( ). A: \( (2x + 4)dx \) B: \( 2xdx \) C: \( ({x^2} + 4)dx \) D: \( ({x^2} + 4x)dx \)
- 函数\(z = \ln \left( { { x^2} + {y^2}} \right)\)在\(x = 2,y = 1\)时的全微分为 A: \(0.8dx+0.4dy\) B: \(0.8dx-0.4dy\) C: \(8dx+4dy\) D: \(8dx-4dy\)
- 函数\(z = \ln \left( { { x^2} + {y^2}} \right)\)在\(x = 2,y = 1\)时的全微分为 A: \(0.8dx+0.4dy\) B: \(0.8dx-0.4dy\) C: \(8dx+4dy\) D: \(8dx-4dy\)