设函数f(x)二阶可导,且f"(x)>0,f"(x)>0,△y=f(x+△x)一f(x),其中△x<0,则( ).
A: △y>dy>0
B: △y<dy<0
C: dy>△y>0
D: dy<△y<0
A: △y>dy>0
B: △y<dy<0
C: dy>△y>0
D: dy<△y<0
D
举一反三
- 设f(x)二阶可导,且f"(x)>0,f"(x)>0,又Δy=f(x+Δx)-f(x),则当Δx>0时有______. A: Δy>dy>0 B: Δy<dy<0 C: dy>Δy>0 D: dy<Δy<0
- 设f(x)二阶可导,且f′(x)>0,f″(x)>0,则当Δx>0时有()。 A: Δy>dy>0 B: Δy<dy<0 C: 0<Δy<dy D: dy<Δy<0
- 设函数f(x)在点x=x0处二阶可微,f'(x0)<0,f"(x0)>0,并且按通常意义下定义x0处的△y与dy,则当△x<0,|△x|充分小,有()。 A: △y<dy<0 B: dy<△y<0 C: dy>△y>0 D: △y>dy>0
- 设函数y=f(x)具有二阶导数,且f’(x)>0,f"(x)>0,Δx为自变量x在x0处的增量,Δy与dy分别为f(x)在点x0处对应的增量与微分,若Δx>0,则______ A: 0<dy<Δy. B: 0<Δy<dy. C: Δy<dy<0. D: dy<Δy<0.
- 设函数f(x)在x=x0处可导,则必有() A: △y=0 B: dy=0 C: △y=dy D: lim△y=0
内容
- 0
设f(x,y)与φ(x,y)均为可微函数,且φy’(x,y)≠0,已知(x0,y0)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选择正确的是()。 A: 若f’(x,y)=0,则f’(x,y)=0。 B: 若f’(x,y)=0,则f’(x,y)≠0。 C: 若f’(x,y)≠0,则f’(x,y)=0。 D: 若f’(x,y)≠0,则f’(x,y)≠0。
- 1
设y=x^(x)(x>0)则函数y的微分dy=?
- 2
【填空题】设函数 f(x,y) 在其驻点 (x 0 ,y 0 ) 的某个邻域内有连续的二阶偏导数,而 P(x,y)= , 若 P(x 0 ,y 0 )<0 且 <0, 则 f(x 0 ,y 0 ) 是函数 f(x,y) 的 值
- 3
设y=f(x)二阶可导,f’(x)≠0,它的反函数是x=φ(y),又f(0)=1,
- 4
已知函数$f(x,y)$的偏导数在点$({{x}_{0}},{{y}_{0}})$存在,则下列说法正确的是( ) A: $x$f(x,y)$在点$({{x}_{0}},{{y}_{0}})$一定连续但方向导数不一定存在 B: $f(x,y)$在点$({{x}_{0}},{{y}_{0}})$不一定连续 C: 若$f(x,y)$在点$({{x}_{0}},{{y}_{0}})$处可微,则$f(x,y)$的偏导数在点$({{x}_{0}},{{y}_{0}})$是连续的 D: 若$f(x,y)$在点$({{x}_{0}},{{y}_{0}})$连续,则$f(x,y)$在点$({{x}_{0}},{{y}_{0}})$一定可微