设\( A \) 为 \( n \)阶方阵且 \( \left| A \right| \ne 0 \),则 \( {(2A)^{ - 1}} = \)( )
A: \( {1 \over 2}{A^{ - 1}} \)
B: \( {2^{n - 1}}{A^{ - 1}} \)
C: \( {2^n}{A^{ - 1}} \)
D: \( 2{A^{ - 1}} \)
A: \( {1 \over 2}{A^{ - 1}} \)
B: \( {2^{n - 1}}{A^{ - 1}} \)
C: \( {2^n}{A^{ - 1}} \)
D: \( 2{A^{ - 1}} \)
举一反三
- 设\(A\)为\(n\)阶方阵,\(\left| A \right| = 2 \),则\(\left| {\left| A \right|{A^T}} \right|=\) A: \({2^{n + 1}} \) B: \({2^{n }}\) C: \({2^{n - 1}}\) D: \(2\)
- 设 \( A \)为 \( n \)阶方阵,且\( \left| A \right| = a \ne 0 \) ,则 \( \left| { { A^ * }} \right| = \)( ) A: \( a \) B: \( {1 \over a} \) C: \( {a^{n - 1}} \) D: \( {a^n} \)
- \( {1 \over {1 + x}} \)的麦克劳林公式为( )。 A: \( {1 \over {1 + x}} = 1 + x + { { {x^2}} \over 2} + \cdots + { { {x^n}} \over {n!}} + o\left( { { x^n}} \right) \) B: \( {1 \over {1 + x}} = 1 + x + {x^2} + \cdots + {x^n} + o\left( { { x^n}} \right) \) C: \( {1 \over {1 + x}} = 1 - x + {x^2} - \cdots + {( - 1)^n}{x^n} + o\left( { { x^n}} \right) \) D: \( {1 \over {1 + x}} = 1 - x - { { {x^2}} \over 2}- \cdots - { { {x^n}} \over {n!}} + o\left( { { x^n}} \right) \)
- 设`\A`为`\n`阶方阵,`\A^**`为`\A`的伴随矩阵,且`\| A | = a \ne 0`,则`\| A^**| = ` ( ) A: \[a^{n - 1}\] B: \[a^n \] C: \[a^{n + 1}\] D: \[a^{n + 2}\]
- 将\(f(x) = {1 \over {2 - x}}\)展开成\(x \)的幂级数为( )。 A: \({1 \over {2 - x}} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over { { 2^{n }}}}} \),\(( - 2,2)\) B: \({1 \over {2 - x}} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over { { 2^{n }}}}} \),\(\left( { - 2,2} \right]\) C: \({1 \over {2 - x}} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over { { 2^{n + 1}}}}} \),\(( - 2,2)\) D: \({1 \over {2 - x}} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over { { 2^{n + 1}}}}} \),\(\left( { - 2,2} \right]\)