证明:如果正交矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是上三角矩阵,则[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]一定是对角矩阵并且其主对角元是[tex=3.143x1.286]UpgPA2CfJTcngsFpB0J45Q==[/tex].
举一反三
- 证明:如果实矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]正交相似于对角矩阵,则[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]一定是对称矩阵.
- 求证: 若 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 和对角矩阵 [tex=9.286x1.357]4hVOD4TWSI62OX9AhSJlcFT9/s8GpEqLGvCv8s+mV12qyqoqYS5txrxH/yqVh2LI[/tex] (或任意一个主对角元素互不相同的对角矩阵) 乘法可交换, 则 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 必是对角矩阵; 若进一步 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 还和第一类初等矩阵可交换, 则 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 必是数量矩阵 [tex=1.429x1.214]FxIjkBm1yL0dMFtX1spLfQ==[/tex] (由此可知, 矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是数量矩阵的充要条件是 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 和所有可逆矩阵可交换).
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实 (复) 矩阵, 则 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 可分解为 [tex=3.143x1.214]bx9fPZCBMZvYv69nOgo9Ew==[/tex], 其中 [tex=0.857x1.214]to/MrMoO1ux8UhZHnpEvBg==[/tex] 是正交 (酉) 矩阵, [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是一个上三角矩阵且主对角线上的元素全大于等于零, 并且若 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 可逆矩阵, 则这样的分解必唯一.
- 证明 : 矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 与所有 [tex=0.714x0.786]6aVdGcNDEBq8XNsxxe6TUKJi2/iXUJ0aYNv4lG2aSNE=[/tex] 阶对角矩阵可交换的充分必要条件是 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为 [tex=0.714x0.786]6aVdGcNDEBq8XNsxxe6TUKJi2/iXUJ0aYNv4lG2aSNE=[/tex] 阶对角矩阵.
- 矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是上三角矩阵且主对角线上的元素全相同, 除主对角线上的元素外, [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 至少还有一个元素非零, 求证: [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的 Jordan 标准型必不是对角阵.