设 [tex=3.143x1.214]TGEECqmBKmzi6fwUq56UZg==[/tex] 都是域 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 上的线性空间, 并且 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 是有限维的. 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 到 [tex=0.714x1.0]X6uqj1A7AQmRFBpFsTbZTg==[/tex] 的一个线性映射, [tex=0.929x1.0]GTnOCR9hNPsOuxGSyBGTAE4D+bwdNZdKWKqAkIkho7A=[/tex] 是 [tex=0.714x1.0]X6uqj1A7AQmRFBpFsTbZTg==[/tex] 到 [tex=1.0x1.0]97Y4VMFIqE7cl6MEqnCpuw==[/tex] 的一个线性映射. 证明:[tex=20.214x1.357]FS7OZA/QB7C+VSLfh3qSHml3J36eT1fzanRn2SPZBMlHDoWfXsVTxEupwatQ872w+Ry/E91iqo1QY70oD5KrHZyAY7bKxHTCEAxrEKkuuwY9EXVhpfvislmuWyvh/1DwDmCNGltUOf+1rsBXVUVDsfQHUY808wP0MujXrZPcRDAqB/B6oy8bKuIeYNa1pjcyidih+u0c8/G1wWH/PlqGyepKB/xPHAVMzoXlLfDbh53N6KijN8t4FbNLPDXKXBai[/tex]
举一反三
- 设 [tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex] 是线性空间 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 到线性空间 [tex=0.714x1.0]X6uqj1A7AQmRFBpFsTbZTg==[/tex] 的线性映射, 若 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 的维数大于 [tex=0.714x1.0]X6uqj1A7AQmRFBpFsTbZTg==[/tex] 的维数, 求证: [tex=4.571x1.214]Cl7XURcasfWz8MoFQ30+5S5YVL54FJHuW95WWrFaWxE=[/tex]
- 设 [tex=0.714x1.0]DFsH+JikwCTTlf0uyREzcg==[/tex] 是 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 到 [tex=1.0x1.0]97Y4VMFIqE7cl6MEqnCpuw==[/tex] 的线性映射. 证明: [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 在 [tex=0.714x1.0]DFsH+JikwCTTlf0uyREzcg==[/tex] 下的象是 [tex=1.0x1.0]97Y4VMFIqE7cl6MEqnCpuw==[/tex] 的子空间.
- 设 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 和 [tex=1.071x1.143]SEwIem1RXUAaU4aCzKG5tQ==[/tex] 都是域 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 上有限维线性空间, [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 到 [tex=1.071x1.143]SEwIem1RXUAaU4aCzKG5tQ==[/tex] 的一个线性映射. 证明: 存在 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 的由个基和 [tex=1.071x1.143]SEwIem1RXUAaU4aCzKG5tQ==[/tex] 的一个基, 使得 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 在这一对基下的矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 形如 [tex=5.214x2.786]jcCMHflCR8OS9TosV6N5vOGsz4lMsaik2WCvgDGOBAqVscNdEHQ2gVv3HlIwyzLR+CcPnB5qDwlqwJNgLQJPHg==[/tex]
- 设 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 和 [tex=0.714x1.0]X6uqj1A7AQmRFBpFsTbZTg==[/tex] 是数域 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 上的向量空间, [tex=5.429x1.0]5XWH7n5GxMHnX5nq+6dNyVv08PxRWhXq62sIUFVWQn5AtOp5a55Sjoba/INzUbjU[/tex] 是 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 的一组基, [tex=5.786x1.0]rkTpN1N8fnivSCMqkApx5h1kL8np/aV+PV/kl1bYUP5FcQ6KJiSaGI+kCAWWoQxO[/tex] 是 [tex=0.714x1.0]X6uqj1A7AQmRFBpFsTbZTg==[/tex] 中 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 个向量, 求证: 必存在 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 到 [tex=0.714x1.0]X6uqj1A7AQmRFBpFsTbZTg==[/tex] 的唯一的线性映射 [tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex], 使 [tex=4.071x1.357]YTKB7Lm/TRd5jffCkeKNV5GxJua+o6w2yz+r4g0mWArdwin4hyBX+dmneblYN28a[/tex]
- 设 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 是域 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 上的一个线性空间, [tex=2.071x1.214]7bSiFAc8MqSuaEcV2mpUyA==[/tex] 是 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 的两个子空间, 且 [tex=4.071x1.214]kZydlf2V+tCUJpeZGXxcOQ==[/tex] 用 [tex=1.0x1.214]8mUw+AcJ35G5qKSnNmYGtA==[/tex] 表示平行于 [tex=1.0x1.0]97Y4VMFIqE7cl6MEqnCpuw==[/tex] 在 [tex=0.714x1.0]X6uqj1A7AQmRFBpFsTbZTg==[/tex] 上的投影. 证明 : [tex=9.357x1.214]o0GWEfzq5TDkepkwDKjyN+LfAfHd2uiPCGxYXa+d+hCBKZWjtWTqv+52vhmAFssfZ9h1FnCIoCAOyS2Do/g/jzbXynXUjmMmBOccPFkG+cU=[/tex]