举一反三
- 设 [tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex] 是线性空间 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 到线性空间 [tex=0.714x1.0]X6uqj1A7AQmRFBpFsTbZTg==[/tex] 的线性映射, 若 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 的维数大于 [tex=0.714x1.0]X6uqj1A7AQmRFBpFsTbZTg==[/tex] 的维数, 求证: [tex=4.571x1.214]Cl7XURcasfWz8MoFQ30+5S5YVL54FJHuW95WWrFaWxE=[/tex]
- 设 [tex=0.714x1.0]DFsH+JikwCTTlf0uyREzcg==[/tex] 是 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 到 [tex=1.0x1.0]97Y4VMFIqE7cl6MEqnCpuw==[/tex] 的线性映射. 证明: [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 在 [tex=0.714x1.0]DFsH+JikwCTTlf0uyREzcg==[/tex] 下的象是 [tex=1.0x1.0]97Y4VMFIqE7cl6MEqnCpuw==[/tex] 的子空间.
- 设 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 和 [tex=1.071x1.143]SEwIem1RXUAaU4aCzKG5tQ==[/tex] 都是域 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 上有限维线性空间, [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 到 [tex=1.071x1.143]SEwIem1RXUAaU4aCzKG5tQ==[/tex] 的一个线性映射. 证明: 存在 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 的由个基和 [tex=1.071x1.143]SEwIem1RXUAaU4aCzKG5tQ==[/tex] 的一个基, 使得 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 在这一对基下的矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 形如 [tex=5.214x2.786]jcCMHflCR8OS9TosV6N5vOGsz4lMsaik2WCvgDGOBAqVscNdEHQ2gVv3HlIwyzLR+CcPnB5qDwlqwJNgLQJPHg==[/tex]
- 设 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 和 [tex=0.714x1.0]X6uqj1A7AQmRFBpFsTbZTg==[/tex] 是数域 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 上的向量空间, [tex=5.429x1.0]5XWH7n5GxMHnX5nq+6dNyVv08PxRWhXq62sIUFVWQn5AtOp5a55Sjoba/INzUbjU[/tex] 是 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 的一组基, [tex=5.786x1.0]rkTpN1N8fnivSCMqkApx5h1kL8np/aV+PV/kl1bYUP5FcQ6KJiSaGI+kCAWWoQxO[/tex] 是 [tex=0.714x1.0]X6uqj1A7AQmRFBpFsTbZTg==[/tex] 中 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 个向量, 求证: 必存在 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 到 [tex=0.714x1.0]X6uqj1A7AQmRFBpFsTbZTg==[/tex] 的唯一的线性映射 [tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex], 使 [tex=4.071x1.357]YTKB7Lm/TRd5jffCkeKNV5GxJua+o6w2yz+r4g0mWArdwin4hyBX+dmneblYN28a[/tex]
- 设 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 是域 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 上的一个线性空间, [tex=2.071x1.214]7bSiFAc8MqSuaEcV2mpUyA==[/tex] 是 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 的两个子空间, 且 [tex=4.071x1.214]kZydlf2V+tCUJpeZGXxcOQ==[/tex] 用 [tex=1.0x1.214]8mUw+AcJ35G5qKSnNmYGtA==[/tex] 表示平行于 [tex=1.0x1.0]97Y4VMFIqE7cl6MEqnCpuw==[/tex] 在 [tex=0.714x1.0]X6uqj1A7AQmRFBpFsTbZTg==[/tex] 上的投影. 证明 : [tex=9.357x1.214]o0GWEfzq5TDkepkwDKjyN+LfAfHd2uiPCGxYXa+d+hCBKZWjtWTqv+52vhmAFssfZ9h1FnCIoCAOyS2Do/g/jzbXynXUjmMmBOccPFkG+cU=[/tex]
内容
- 0
设 [tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex] 是线性空间 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 到 [tex=0.714x1.0]X6uqj1A7AQmRFBpFsTbZTg==[/tex] 的线性映射, 则必存在 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 和 [tex=0.714x1.0]X6uqj1A7AQmRFBpFsTbZTg==[/tex] 的两组基, 使线性映射 [tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex] 在两组基下的表示矩阵为 [tex=5.5x2.786]jcCMHflCR8OS9TosV6N5vOGsz4lMsaik2WCvgDGOBAocIVyOBfqUzesJTrjK6zZ+d35oA8cH1C8Ci4UbJlvD8Q==[/tex]
- 1
设 [tex=0.714x1.0]DFsH+JikwCTTlf0uyREzcg==[/tex] 是 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 到 [tex=1.0x1.0]97Y4VMFIqE7cl6MEqnCpuw==[/tex] 的线性映射. 证明: [tex=0.714x1.0]DFsH+JikwCTTlf0uyREzcg==[/tex] 的核[p=align:center][tex=10.929x1.357]79Wd/JsaQKi3RBB3vwr83++T1RL7xHRl7h6/jYuyZNiKMy7xkr4ORGAMG33OkkToJExhkKLj0aUodV2n06JAE4PzxkAVaRTbEfGx9kYZZBg=[/tex]是 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 的子空间.
- 2
设 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 是域 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 上一个线性空间. 证明: 若 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 是有限维的, 则 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 的任一子空间都是某些线性函数的零化子空间.
- 3
6个顶点11条边的所有非同构的连通的简单非平面图有[tex=2.143x2.429]iP+B62/T05A6ZTM0eeaWiQ==[/tex]个,其中有[tex=2.143x2.429]ndZSw3zT0QTOVLVdoUto1Q==[/tex]个含子图[tex=1.786x1.286]J+vVZa2YaMpc6mJBbqVvWw==[/tex],有[tex=2.143x2.429]lmhx48evnQMhi03NovPXig==[/tex]个含与[tex=1.214x1.214]kFXZ1uR8GjycbJx+Ts2kyQ==[/tex]同胚的子图。供选择的答案[tex=3.071x1.214]3KinXFh3SXhZ7nIe1y9KEV6aadxhhJWeEy6Dij1iObdMUZkY6ZA5J2dVVjPSuhEf[/tex]:(1) 1 ;(2) 2 ;(3) 3 ; (4) 4 ;(5) 5 ;(6) 6 ; (7) 7 ; (8) 8 。
- 4
设 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 是域 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 上任意一个线性空间 (可以是无限维的), [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 上的一个线性变换. 证 明: [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的属于不同特征值的特征向量是线性无关的.