• 2022-06-08
    设 [tex=3.143x1.214]TGEECqmBKmzi6fwUq56UZg==[/tex] 都是域 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 上的线性空间, 并且 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 是有限维的. 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 到 [tex=0.714x1.0]X6uqj1A7AQmRFBpFsTbZTg==[/tex] 的一个线性映射, [tex=0.929x1.0]GTnOCR9hNPsOuxGSyBGTAE4D+bwdNZdKWKqAkIkho7A=[/tex] 是 [tex=0.714x1.0]X6uqj1A7AQmRFBpFsTbZTg==[/tex] 到 [tex=1.0x1.0]97Y4VMFIqE7cl6MEqnCpuw==[/tex] 的一个线性映射. 证明:[tex=20.214x1.357]FS7OZA/QB7C+VSLfh3qSHml3J36eT1fzanRn2SPZBMlHDoWfXsVTxEupwatQ872w+Ry/E91iqo1QY70oD5KrHZyAY7bKxHTCEAxrEKkuuwY9EXVhpfvislmuWyvh/1DwDmCNGltUOf+1rsBXVUVDsfQHUY808wP0MujXrZPcRDAqB/B6oy8bKuIeYNa1pjcyidih+u0c8/G1wWH/PlqGyepKB/xPHAVMzoXlLfDbh53N6KijN8t4FbNLPDXKXBai[/tex]
  • 解: 考虑 [tex=0.929x1.0]GTnOCR9hNPsOuxGSyBGTAE4D+bwdNZdKWKqAkIkho7A=[/tex] 在 [tex=1.357x1.0]DrsRScHBeemWnGnK7JjpgA==[/tex] 上的限制 [tex=3.214x1.357]PePjh6KxmLjke7oniRzA+g==[/tex] 它的象是 [tex=6.857x1.357]lgBF7+vbPX66o45Dy8b9joUANOYMcTn9pcqGKBGuBlA=[/tex] 计算 [tex=17.643x1.357]NovbxKl63Ey/milqTcbe/zEUh6aSlTsyUP/MWm5Py8yNPPPgKT7WPJWvE7qqQ1ecTDc/dVW7liIPnBGbuo1Zlg5xHzWGrFKosFoWYL1tFQoPBPL3qTbD0hA70zFkZM8OSEc63TWumB49Wkyqq/AkdmqWwNPq0b5wU4ZVOEEDQebhsz1sZwovKkMVdREFkrizzhMODJVyXuuLxi21FZ9adg==[/tex]

    举一反三

    内容

    • 0

      设 [tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex] 是线性空间 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 到 [tex=0.714x1.0]X6uqj1A7AQmRFBpFsTbZTg==[/tex] 的线性映射, 则必存在 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 和 [tex=0.714x1.0]X6uqj1A7AQmRFBpFsTbZTg==[/tex] 的两组基, 使线性映射 [tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex] 在两组基下的表示矩阵为 [tex=5.5x2.786]jcCMHflCR8OS9TosV6N5vOGsz4lMsaik2WCvgDGOBAocIVyOBfqUzesJTrjK6zZ+d35oA8cH1C8Ci4UbJlvD8Q==[/tex]

    • 1

      设 [tex=0.714x1.0]DFsH+JikwCTTlf0uyREzcg==[/tex] 是 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 到 [tex=1.0x1.0]97Y4VMFIqE7cl6MEqnCpuw==[/tex] 的线性映射. 证明: [tex=0.714x1.0]DFsH+JikwCTTlf0uyREzcg==[/tex] 的核[p=align:center][tex=10.929x1.357]79Wd/JsaQKi3RBB3vwr83++T1RL7xHRl7h6/jYuyZNiKMy7xkr4ORGAMG33OkkToJExhkKLj0aUodV2n06JAE4PzxkAVaRTbEfGx9kYZZBg=[/tex]是 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 的子空间.

    • 2

      设 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 是域 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 上一个线性空间. 证明: 若 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 是有限维的, 则 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 的任一子空间都是某些线性函数的零化子空间.

    • 3

      6个顶点11条边的所有非同构的连通的简单非平面图有[tex=2.143x2.429]iP+B62/T05A6ZTM0eeaWiQ==[/tex]个,其中有[tex=2.143x2.429]ndZSw3zT0QTOVLVdoUto1Q==[/tex]个含子图[tex=1.786x1.286]J+vVZa2YaMpc6mJBbqVvWw==[/tex],有[tex=2.143x2.429]lmhx48evnQMhi03NovPXig==[/tex]个含与[tex=1.214x1.214]kFXZ1uR8GjycbJx+Ts2kyQ==[/tex]同胚的子图。供选择的答案[tex=3.071x1.214]3KinXFh3SXhZ7nIe1y9KEV6aadxhhJWeEy6Dij1iObdMUZkY6ZA5J2dVVjPSuhEf[/tex]:(1) 1 ;(2) 2 ;(3) 3 ; (4) 4 ;(5) 5 ;(6) 6 ; (7) 7 ; (8) 8 。

    • 4

      设 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 是域 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 上任意一个线性空间 (可以是无限维的), [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]  是 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]  上的一个线性变换. 证 明: [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]  的属于不同特征值的特征向量是线性无关的.