举一反三
- 判断下列矩阵是否可逆,若可逆,求它的逆矩阵.[tex=8.0x3.643]dEdrC9SQsN/3Vx39SaFo4KoFbxGQkHR8S1F1lBgJktZWcCZnptPs58LN52o9kApBj9HN2/EO87xZvXpKHXILwO0UvfCQMheFccMP6k5ONQKtlpY3ga/BL+KGf78hHFZn[/tex].
- 判断下列矩阵是否可逆,若可逆,求它的逆矩阵:[tex=4.929x2.786]jcCMHflCR8OS9TosV6N5vMkHTRHzWo810v8QRVT0g3iIrbBisQQHPhUbdUi+Iuw9MsuA8FTpmhnzNyhIPdVfEw==[/tex]
- 判断下列矩阵是否可逆,若可逆,求它的逆矩阵:[tex=5.0x2.786]jcCMHflCR8OS9TosV6N5vLL6n+SGrZCwS6nSbQyHJg6OKppmI9hk5wtrzr/b+Qxo9b3EmH/gAD0Z0gLYG/irgA==[/tex].
- 求下列矩阵的伴随矩阵,若可逆,求逆矩阵:[p=align:center][tex=4.571x2.786]075gCzZzsMRb6HYXYk9X99kndfbJ3U3QeBg7vJXXA4luJy1yxxuTOQvqIyyBqshLDWuFqgbusozdZjBR/QQkNQ==[/tex]
- 判断矩阵[tex=7.786x3.5]3BT1BgBZQ5uJXxD5dg+w2/ZzvAjU/pVa/PBSz4mFwQuCH+D0tIH3BTmqh8hueWGqdIsEtzPLyA8BMoqPlwDBz2ingshT3e/yPFscdEJmwqlk6GkOaExjhbw7xiPg6Sdi[/tex]是否可逆,若可逆,用求逆公式求逆矩阵.
内容
- 0
判断下列矩阵是否可逆,若可逆则求其逆矩阵.[tex=6.143x3.5]jcCMHflCR8OS9TosV6N5vPAdpRpt90FnWfGRnax74yj1pIWGFrlsA1FV6sUWB3pQvUlSTyBKLgqlehf1rlco41FLM9aTotOKaxEjDL7131M=[/tex]
- 1
判断下列矩阵是否可逆,若可逆,利用伴随矩阵求其逆矩阵.[tex=4.929x2.786]jcCMHflCR8OS9TosV6N5vN91Uvo65Oeiu64FmnuVZgGKZNtf2cU2zF7NSJAh4BC4GPBAO0Nc9rNaesdv/jN9dA==[/tex]
- 2
判断下列矩阵是否可逆,若可逆,利用伴随矩阵求其逆矩阵.[tex=6.143x3.5]075gCzZzsMRb6HYXYk9X919j7TNOX98jRvEZbZYqy5804Zn6FN5rV1yWw65FxoUfwZnng/N+arHqUyoF07N+xwXS4dZhGYDIDo8zX4GU34s=[/tex]
- 3
判断下列矩阵是否可逆,若可逆,利用伴随矩阵求其逆矩阵.[tex=6.071x2.786]jcCMHflCR8OS9TosV6N5vC65SLNSWU45HLgVabVtrxBTZQNf8mkvCx+mbmhH8XQqWdsinj1ekQUaRFHBVWzNew==[/tex][br][/br]
- 4
判断下列矩阵是否可逆,若可逆,利用伴随矩阵求其逆矩阵.[tex=7.857x3.929]075gCzZzsMRb6HYXYk9X9/9RgFi+jPqFLx2vxFS9n70p1HQcMDbXaRolLDQuN7uP9Gc42fwXPaR70hlVVHTp3A7L+B5z5me3Vtu/iKMxTrZPslmM5TxtxCWlDHesAO4l[/tex]