求下列矩阵的伴随矩阵,若可逆,求逆矩阵:[p=align:center][tex=4.571x2.786]075gCzZzsMRb6HYXYk9X99kndfbJ3U3QeBg7vJXXA4luJy1yxxuTOQvqIyyBqshLDWuFqgbusozdZjBR/QQkNQ==[/tex]
举一反三
- 求下列矩阵的伴随矩阵,若可逆,求逆矩阵:[p=align:center][tex=6.929x3.643]075gCzZzsMRb6HYXYk9X99VY4UUrUduUv3Z42ZOCrBa4teCVjUpFgK+YEWOv17gbkbuZVUWN1bMopZIEDmi+ADGKQSib3V225fmHJnbzVF0ovQayRx2fCgT9sp034Uk4[/tex]
- 判断下列矩阵是否可逆,若可逆,求它的逆矩阵.[tex=4.571x2.786]dEdrC9SQsN/3Vx39SaFo4LxwNJrq217/wqKvN/bofNoswLDKqNUUcYE0xE3VhocNC+djNAmbuP+ecoaUDr/I0Q==[/tex];
- 用初等变换法求下列矩阵的逆矩阵.[p=align:center][tex=7.643x3.643]075gCzZzsMRb6HYXYk9X9+LhKwEfeQLUt/9zH8jmuN4Jh7g6rvzwwynnjhPEJZjdft1o04KIcC1kfEAiSNvWC9sF5EYxYsmHEnUEDnxylgAcJ7V7Qw4KLEACC4FcHls1[/tex]
- 下列矩阵是否与对角矩阵相似?若相似于对角矩阵, 求 [tex=0.714x1.286]BMKsEVFNvpiLV0UsqDFXCw==[/tex] 使 [tex=3.214x1.286]1sFdXzzqHCc4qLXdM8ki4Toicy90dsQBVNzF4LK8JX8=[/tex] 为对角矩阵.[p=align:center][tex=4.5x2.786]jcCMHflCR8OS9TosV6N5vEh2mkwOQPgJaMjhXUUvt/u/aDMg7Joull2yzyzjRLUkka8hhHVAcdjyppjElztjEA==[/tex]
- 下列矩阵是否与对角矩阵相似?若相似于对角矩阵, 求 [tex=0.714x1.286]BMKsEVFNvpiLV0UsqDFXCw==[/tex] 使 [tex=3.214x1.286]1sFdXzzqHCc4qLXdM8ki4Toicy90dsQBVNzF4LK8JX8=[/tex] 为对角矩阵.[p=align:center][tex=5.357x2.786]jcCMHflCR8OS9TosV6N5vFWjToaaWqOOGqoRSEmRakI8euajTYJW+cFHO0sg+D0a+NjWo5p5K3fsrlwkGSJ1tg==[/tex]