• 2022-06-08
    矩阵称 [tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]为对称的,如果[tex=3.357x1.143]2clv6Xa+ixytxjXZ9Y3BRw4dAIuaCrPoZV0cyMNFz6M=[/tex]证明:如果[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是实对称矩阵,且[tex=2.429x1.214]9Dzmlpoqgb8wUTG1Zrz7Jw==[/tex],那么[tex=2.071x1.0]P1sZi5Sh6qXV+PX80otJJg==[/tex].
  • 证 设[tex=12.714x4.5]sSXBpxJWudVpH1R35o4LnAUhRqj1im4mVfSmneiBYdw3PAz/zoiQ9quxpCEKN3FfCFF0bfsIsYTnJewb4SDbmA0sHAmUamk/vLI0NW6c3q8cIdCeZkxjSOfiwo7wJWOOB5Lz/xcA2BOMRrOQtSOf14xe+YWUye/TQjast46Kludfm3xF/y9+J6HjpP8MnxBOw3Py4gKvIJpexDGbcLMYHPfcGg/4BgdFJpRgTHurS+n9MC+EsNJN4eDwkoTwbTuFPG1DoBDk2Y0wJGqCebK9TA==[/tex]则[tex=29.214x6.071]Jof/THmGXOoQg8X/23r4fCK0KTe6ECMi+eI7K9NKs+xgCfya0XnDa34AdqK8NhutKsPnWfpz8vz5PbmUjoK5EuDsMsb0JNqH+zYiLnIajEWdaOW5KQxEObQgZR21KDQ6kaFdoWKB9xjrhxiXwYehL/bQ2I2M1mv821AOVk6P7tWQPjmsLoykElamFMrbFLiGUYyKnLpPEgU+9SF5Mzyp6xwAXTN4xEychtSnBTR5z0yaIFEwdRrN4/YYqrViZyxfyO4F3MCbetSuO0Ogbmg7OF9I50xtOkah4NKuQWZri6oRzhdCG2YdZPVKt6ZgDKLyZWgXkYZC0uNxQJ/vTxgyQUz4ia/+RRANV43jgZYgCmM=[/tex]由[tex=2.429x1.214]9Dzmlpoqgb8wUTG1Zrz7Jw==[/tex]有[tex=20.143x1.643]W6qNN4mwuI9bDJpS54Sy6xLlomfat4Ter0EUDVX7TU47/Cyce1X9Sdmi0pRd5w6FVSznAWCI1SQJgDTf5o+bddtBR0ISqar/rThvYOLsDbqwNAtH9ELqwfEQwB8kAHAR66eGDDf7c4YTTWv/CktOCA==[/tex]因而必有[tex=22.143x1.357]I267r+zBZvN2vSy0YuKJL8GoDnuBdKHLetsiW0Z+XpqOjadNUe5UGd4Int6Q33F42avf/1M3wL+UJfPYAtMChn5KOqDcGfeRQmRXX8ofAto=[/tex]即证[tex=2.071x1.0]P1sZi5Sh6qXV+PX80otJJg==[/tex]

    举一反三

    内容

    • 0

      证明:如果[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级正交矩阵[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是上三角矩阵,那么[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是对角矩阵,且[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的主对角元为1或-1.

    • 1

      设3阶矩阵[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的特征值为-2, -1, 3,矩阵[tex=6.786x1.357]5sQBSCH1+oEoQda8DcapHw==[/tex],求矩阵[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]的行列式[tex=1.357x1.357]JRr5OoiiAPF9KB2ukKJtuw==[/tex]

    • 2

      已知[tex=1.786x1.214]IENxQEh5u4RdnCaqHm72Xg==[/tex]为3阶矩阵,且[tex=6.5x1.357]Xw38Dcvrbs7IEKOZRvkd5g==[/tex],其中[tex=0.786x1.0]XvHgf70VtK2FH5G93l0k3g==[/tex]是3阶单位矩阵.(1)证明:矩阵[tex=2.786x1.143]RcZ2ZRIlzxNTbD8lUHAX+Q==[/tex]可逆;(2)若[tex=7.786x3.5]DgXZT9CtCPAglTYwc4pEdVwGPrEvfplbNSz07f1CHm3lKZFzRkIi88nqRWCa7cdxtDn1Uq6Au4bDH+3NSK9+pGWuIrunnKgMXUiXxap7tYqS5e4P0ZLrWW76zZyDl/um[/tex],求矩阵[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]

    • 3

      方阵[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]如果满足[tex=2.357x1.214]oRmt9c0CsPgEyZLFtQKdVg==[/tex],那么称[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是对合矩阵.证明:(1)如果[tex=2.0x1.214]IENxQEh5u4RdnCaqHm72Xg==[/tex]都是[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级对合矩阵,且[tex=4.714x1.357]D74gP9jezXZXFr8fqUm7RQ==[/tex],那么[tex=5.357x1.214]2mqnri314gFBeiyyB+TjEA==[/tex]都不可逆;(2)如果[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]是对合矩阵,且[tex=3.429x1.357]sq+tWHki5dzgpkJQwGJSzw==[/tex],那么[tex=2.0x1.143]VSG5gqt8BBxdUnKNWW7jWQ==[/tex]不可逆.

    • 4

      设三阶对称矩阵[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的特征值为6,3,3,与特征值6对应的特征向量为[tex=5.286x1.5]7SO+1xanaUBExj3X4I1Ptj6zjgGXxaG/QZ3ARAaDg0U=[/tex],求[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex] .