在等比数列{an}中,an=2×3n-1,则数列中前n个偶数项的和等于
A: 3n-1
B: 3(3n-1)
C: (9n-1)
D: (9n-1)
A: 3n-1
B: 3(3n-1)
C: (9n-1)
D: (9n-1)
举一反三
- 数列Xn=n+(n²-n^3)^1/3的极限是 A: 1 B: 无极限 C: 1/2 D: 1/3
- Sets: Aam/a,b,c/:m,n;EndsetsData: M,n=2 3 1 9 0 8;Enddata下列说法错误的是 A: m(1)=2,n(1)=9 B: m(1)=2,n(2)=9 C: m(2)=1,n(2)=9 D: m(3)=0,n(3)=8
- 设`\n`阶方阵`\A`满足`\|A| = 2`,则`\|A^TA| = ,|A^{ - 1}| = ,| A^ ** | = ,| (A^ ** )^ ** | = ,|(A^ ** )^{ - 1} + A| = ,| A^{ - 1}(A^ ** + A^{ - 1})A| = `分别等于( ) A: \[4,\frac{1}{2},{2^{n - 1}},{2^{{{(n - 1)}^2}}},2{(\frac{3}{2})^n},\frac{{{3^n}}}{2}\] B: \[2,\frac{1}{2},{2^{n - 1}},{2^{{{(n + 1)}^2}}},2{(\frac{3}{2})^n},\frac{{{3^n}}}{2}\] C: \[4,\frac{1}{2},{2^{n + 1}},{2^{{{(n - 1)}^2}}},2{(\frac{3}{2})^{n - 1}},\frac{{{3^n}}}{2}\] D: \[2,\frac{1}{2},{2^{n - 1}},{2^{{{(n - 1)}^2}}},2{(\frac{3}{2})^{n - 1}},\frac{{{3^n}}}{2}\]
- 已知数列{an}的一个通项公式an=(-1)n·(3n-1),则a4等于( ) A: -7 B: 7 C: -11 D: 11
- 下列数列中,不是无穷大的是 A: $\frac{n}{\ln n}$ B: $-{{n}^{2}}+n$ C: $\frac{n({{n}^{\frac{7}{3}}}+1)}{{{n}^{\frac{15}{4}}}}$ D: ${{(-1)}^{n}}{{n}^{3}}+{{n}^{2}}-10n$