若 [tex=0.643x1.0]uPu/UBwxTDghY6MHYDLmcA==[/tex] 是小量,问如何选取常数 [tex=2.0x1.214]rx7+rpOjmyj7tj6QX/SKxw==[/tex], オ能使得 [tex=11.214x1.357]R9pHqT00Mjd5Oj0zgS8bbuHoNNFSnpl5Iy1XGIZ8cyA=[/tex] 与 [tex=2.429x1.429]79SmwT+8J9VTqKDgDEyFqyq/RV3jccSxj4F/gfqSdMY=[/tex] 近似的阶最高?
举一反三
- 设 [tex=2.429x1.429]79SmwT+8J9VTqKDgDEyFqyq/RV3jccSxj4F/gfqSdMY=[/tex] 连续,则 [tex=6.0x2.643]NR6iiJaJGrwCzBozJPbnuSY5siYQf2p9UJm+am9isCKQ/P4Krb+3nvDmATBMZ+CJ[/tex][input=type:blank,size:6][/input]
- 已知[tex=2.429x1.429]79SmwT+8J9VTqKDgDEyFqyq/RV3jccSxj4F/gfqSdMY=[/tex]存在,[tex=4.286x1.357]N4e4dKYNGeiFgRaGjOb8Ew==[/tex]求[tex=1.786x2.5]+sfv9fbaljqgKDIK5JrU9Y5Em4Qd79k9c+OoGz0cVHA=[/tex].
- 已知 [tex=2.429x1.429]79SmwT+8J9VTqKDgDEyFqyq/RV3jccSxj4F/gfqSdMY=[/tex]存在,求 [tex=1.786x2.5]+sfv9fbaljqgKDIK5JrU9Y5Em4Qd79k9c+OoGz0cVHA=[/tex] : [tex=8.429x1.357]1eoK0XMrwmJm1NgodsGCBzitnaGL2ofy0SGzhJHukDw=[/tex].
- 设[tex=10.643x1.429]WSlAUy5l9EAUxxLjkXZaugWZmlSJ9UGVzMF0jVnqHz8qcoJkcpTzPPcdrLfnokhj[/tex]求[tex=6.357x2.786]ybep552s6B57scuqsHbergb29HCUEa1YakGGZOKorYrkp6eCa07ATusyM1N1QxpCp/BOr4LpNgeN6CWiF0V9zQ==[/tex] (设[tex=2.429x1.429]79SmwT+8J9VTqKDgDEyFqyq/RV3jccSxj4F/gfqSdMY=[/tex]连续).
- 求函数的高阶导数:[tex=4.929x1.357]4ZKCFb90wAFaa6PFgGDWdg==[/tex], 求[tex=2.429x1.429]79SmwT+8J9VTqKDgDEyFqyq/RV3jccSxj4F/gfqSdMY=[/tex]