设 [tex=2.071x1.214]0aqQOsaNf6jKrWhlACndVg==[/tex] 都是域 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 上线性空间 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 的子空间,证明 [tex=10.714x2.071]BlbRV6hmnF5YbAykKbuM83aiLvA61LxU+GqrrNExjMNg3izsles3R25gcUECl8eH[/tex].
举一反三
- 设 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 是域 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 上一个线性空间. 证明: 若 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 是有限维的, 则 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 的任一子空间都是某些线性函数的零化子空间.
- 设 [tex=2.357x1.214]b+19PhVr4qu1uqfrbbodNg==[/tex] 是域 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 上线性空间 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 的两个真子空间 ( 即 [tex=2.786x1.214]2OQFgyX1n/0U9jfuDG8AuA==[/tex] ), 证明: [tex=4.5x1.214]zHn9rRqmMnIDW2iEd9bFUI4woLinbLyKrYc04YIkanw=[/tex]
- 设 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 是域 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 上的一个线性空间, [tex=2.071x1.214]7bSiFAc8MqSuaEcV2mpUyA==[/tex] 是 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 的两个子空间, 且 [tex=4.071x1.214]kZydlf2V+tCUJpeZGXxcOQ==[/tex] 用 [tex=1.0x1.214]8mUw+AcJ35G5qKSnNmYGtA==[/tex] 表示平行于 [tex=1.0x1.0]97Y4VMFIqE7cl6MEqnCpuw==[/tex] 在 [tex=0.714x1.0]X6uqj1A7AQmRFBpFsTbZTg==[/tex] 上的投影. 证明 : [tex=9.357x1.214]o0GWEfzq5TDkepkwDKjyN+LfAfHd2uiPCGxYXa+d+hCBKZWjtWTqv+52vhmAFssfZ9h1FnCIoCAOyS2Do/g/jzbXynXUjmMmBOccPFkG+cU=[/tex]
- 设[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]是数域上的线性空间,证明[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]有一组基.
- 设 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 是数域 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 上的一维空间, 写出 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 上所有的线性变换[input=type:blank,size:6][/input]