以4,9,1为为插值节点,求\(\sqrt x \)的lagrange的插值多项式 A: \( {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) + {1 \over {24}}(x - 4)(x - 9)\) B: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) + {1 \over {24}}(x - 4)(x - 9)\) C: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x +1) + {1 \over {24}}(x - 4)(x - 9)\) D: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) - {1 \over {24}}(x - 4)(x - 9)\)
以4,9,1为为插值节点,求\(\sqrt x \)的lagrange的插值多项式 A: \( {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) + {1 \over {24}}(x - 4)(x - 9)\) B: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) + {1 \over {24}}(x - 4)(x - 9)\) C: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x +1) + {1 \over {24}}(x - 4)(x - 9)\) D: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) - {1 \over {24}}(x - 4)(x - 9)\)
x=9,y=4,x%y=______ ,x//y=______
x=9,y=4,x%y=______ ,x//y=______
a=[4,-1,2,-4,-9],执行命令[x for x in a if x>0]的返回值是()
a=[4,-1,2,-4,-9],执行命令[x for x in a if x>0]的返回值是()
函数的定义域是( ) A: {(x,|2<x2+y2<3} B: {(x,|4<x2+y2<9} C: {(x,|4<x2+y2≤9} D: {(x,|22+y2≤3}
函数的定义域是( ) A: {(x,|2<x2+y2<3} B: {(x,|4<x2+y2<9} C: {(x,|4<x2+y2≤9} D: {(x,|22+y2≤3}
x的4次方开更号加y的9次方开更号减z的121次方开更号等于66,例如,y的9次方开更号应等于y的4、5次方
x的4次方开更号加y的9次方开更号减z的121次方开更号等于66,例如,y的9次方开更号应等于y的4、5次方
下面表达式的运行结果是( ) int x=4,y=9; x>=y?y:x A: 4 B: 9 C: 1 D: 0
下面表达式的运行结果是( ) int x=4,y=9; x>=y?y:x A: 4 B: 9 C: 1 D: 0
x–9/1x=4解方程
x–9/1x=4解方程
假设x=4,y=2,m=5,n=4,w=12,t=9,则经过表达式(w=x 0 9
假设x=4,y=2,m=5,n=4,w=12,t=9,则经过表达式(w=x 0 9
同时掷2颗均匀骰子,X表示点数大于4出现的个数,则以下结果正确的是 A: X服从二项分布 B: P(X=0)=P(X=1) C: P(X=1)=4/9 D: P(X=0)=1/9 E: P(X=2)=4/9 F: P(X>;0)=1 G: P(X<;2)=5/9 H: P(X>;1)>;0.5
同时掷2颗均匀骰子,X表示点数大于4出现的个数,则以下结果正确的是 A: X服从二项分布 B: P(X=0)=P(X=1) C: P(X=1)=4/9 D: P(X=0)=1/9 E: P(X=2)=4/9 F: P(X>;0)=1 G: P(X<;2)=5/9 H: P(X>;1)>;0.5
3.设函数$f(x)={{x}^{4}}\sin x$,则${{f}^{(9)}}(0)=$( )。 A: $\frac{9!}{5!}$ B: $\frac{5!}{9!}$ C: $\frac{1}{5!}$ D: $0$
3.设函数$f(x)={{x}^{4}}\sin x$,则${{f}^{(9)}}(0)=$( )。 A: $\frac{9!}{5!}$ B: $\frac{5!}{9!}$ C: $\frac{1}{5!}$ D: $0$