3.设函数$f(x)={{x}^{4}}\sin x$,则${{f}^{(9)}}(0)=$( )。
A: $\frac{9!}{5!}$
B: $\frac{5!}{9!}$
C: $\frac{1}{5!}$
D: $0$
A: $\frac{9!}{5!}$
B: $\frac{5!}{9!}$
C: $\frac{1}{5!}$
D: $0$
举一反三
- 函数$f(x)=\sin x + \cos x,x \in [0,2 \pi]$的上凸区间为 A: $[0,\frac{\pi}{4}] \cup [\frac{5}{4} \pi,2 \pi] $ B: $[\frac{\pi}{4},\frac{5}{4} \pi]$ C: $[0,\frac{3}{4}\pi] \cup [\frac{7}{4} \pi,2 \pi] $ D: $[\frac{3}{4} \pi,\frac{7}{4} \pi] $
- 函数$f(x)=\arctan x$的带佩亚诺余项的麦克劳林公式为$$f(x)=x-\frac{x^3}{3}+\frac{x^5}{5}+o(x^5),$$由此可知,$f^{(5)}(0)$的值为 A: $\frac{1}{5}$ B: $1$ C: $24$ D: $\frac{1}{600}$
- 将函数\(f(x)=\sin^4 x\)展开成Fourier级数为 ____ . A: \(f(x) = \frac{3}{8}-\frac{1}{2}\cos 2x +\frac{1}{8}cos 4x\) B: \(f(x) = \frac{1}{4}-\frac{1}{2}\cos x +\frac{3}{8}cos 4x\) C: \(f(x) = \frac{1}{4}-\frac{1}{2}\sin 2x -\frac{3}{8}cos 4x\) D: \(f(x) = \frac{3}{8}-\frac{1}{2}\sin x -\frac{1}{8}cos 4x\)
- 函数$f(x)=x^3-5x^2-8x$的上凸区间为 A: $(-\infty,\frac{5}{3}) $ B: $(\frac{5}{3},+\infty) $ C: $(-\infty,-\frac{5}{3}) $ D: $(-\frac{5}{3},+\infty) $
- 微分方程\(2y''+5y'=5x^2-2x-1\)的通解是( )。 A: \(y=C_1+C_2e^{-\frac{5}{2}x}+\frac{1}{3}x^3-\frac{3}{5}x^2+\frac{7}{25}x\) B: \(y=C_1+C_2e^{-\frac{5}{2}x}+\frac{1}{3}x^3-\frac{3}{5}x^2\) C: \(y=C_1+C_2e^{-\frac{5}{2}x}+\frac{1}{3}x^3+\frac{7}{25}x\) D: \(y=C_1+C_2e^{-\frac{5}{2}x}-\frac{3}{5}x^2+\frac{7}{25}x\)