光的波长周期和速度的关系是()。 A: 入=C/T B: 入=C·T C: 入=C2T D: 入=T/C
光的波长周期和速度的关系是()。 A: 入=C/T B: 入=C·T C: 入=C2T D: 入=T/C
光影外观的烤箱C2T有几个型号() A: KQD40F-C2T B: KQD45F-C2T C: KQD50F-C2T D: KQD60F-C2T
光影外观的烤箱C2T有几个型号() A: KQD40F-C2T B: KQD45F-C2T C: KQD50F-C2T D: KQD60F-C2T
一阶常微分方程[img=152x26]1802e4d6075ee4f.png[/img]的通解为 A: sin(2*t)/5-cos(2*t)/10+C*exp(-4*t) B: sin(2*t)/7+cos(2*t)/5-C*exp(-3*t) C: sin(2*t)/7-C*cos(2*t)/10+C*exp(-2*t) D: sin(2*t)/7-cos(2*t)/7+C*exp(-5*t)
一阶常微分方程[img=152x26]1802e4d6075ee4f.png[/img]的通解为 A: sin(2*t)/5-cos(2*t)/10+C*exp(-4*t) B: sin(2*t)/7+cos(2*t)/5-C*exp(-3*t) C: sin(2*t)/7-C*cos(2*t)/10+C*exp(-2*t) D: sin(2*t)/7-cos(2*t)/7+C*exp(-5*t)
Fill in the blankFor the expressionf(t)=tε(t)+2ε(t−2)−tε(t−2),f(3)=______ .
Fill in the blankFor the expressionf(t)=tε(t)+2ε(t−2)−tε(t−2),f(3)=______ .
频率和周期的关系为:( ) A: T=ω/2 B: T=ω/(2π) C: T=π/ω D: T=2π/ω
频率和周期的关系为:( ) A: T=ω/2 B: T=ω/(2π) C: T=π/ω D: T=2π/ω
已知向量组\(\alpha_{1}=(1,1,2)^T,\alpha_{2}=(3,t,1)^T,\alpha_{3}=(0,2,-t)^T,\)线性相关\(,\)则\(t\)=\(( \quad )\)。 A: 、\(t=5\)或\(t=-2\) B: 、\(t=5\)或\(t=2\) C: 、\(t=-5\)或\(t=2\) D: 、\(t=1\)或\(t=-2\)
已知向量组\(\alpha_{1}=(1,1,2)^T,\alpha_{2}=(3,t,1)^T,\alpha_{3}=(0,2,-t)^T,\)线性相关\(,\)则\(t\)=\(( \quad )\)。 A: 、\(t=5\)或\(t=-2\) B: 、\(t=5\)或\(t=2\) C: 、\(t=-5\)或\(t=2\) D: 、\(t=1\)或\(t=-2\)
设α1=(1,3,4,-2)T,α2=(2,1,3,t)T,α3=(3,-1,2,0)T线性相关,则t=() A: 1 B: -1 C: 2 D: -2
设α1=(1,3,4,-2)T,α2=(2,1,3,t)T,α3=(3,-1,2,0)T线性相关,则t=() A: 1 B: -1 C: 2 D: -2
假设检验的拒绝域是()。 A: (-∞,-z<sub>α/2</sub>]∪[z<sub>α/2</sub>,+∞) B: (-∞,-t<sub>α/2</sub>]∪[t<sub>α/2</sub>,+∞),t<sub>α/2</sub>=t<sub>α/2</sub>(n) C: (-∞,-t<sub>α/2</sub>]∪[t<sub>α/2</sub>,+∞),t<sub>α/2</sub>=t<sub>α/2</sub>(n-1) D: (t<sub>α</sub>,+∞)
假设检验的拒绝域是()。 A: (-∞,-z<sub>α/2</sub>]∪[z<sub>α/2</sub>,+∞) B: (-∞,-t<sub>α/2</sub>]∪[t<sub>α/2</sub>,+∞),t<sub>α/2</sub>=t<sub>α/2</sub>(n) C: (-∞,-t<sub>α/2</sub>]∪[t<sub>α/2</sub>,+∞),t<sub>α/2</sub>=t<sub>α/2</sub>(n-1) D: (t<sub>α</sub>,+∞)
求微分方程[img=269x55]17da6536a9fba07.png[/img]的通解; ( ) A: (C15*sin(2*t))/exp(3*t) + (C16*sin(2*t))/exp(3*t) B: (C15*cos(2*t))/exp(3*t) - (C16*sin(2*t))/exp(3*t) C: (C15*cos(2*t))/exp(3*t) + (C16*cos(2*t))/exp(3*t) D: (C15*cos(2*t))/exp(3*t) + (C16*sin(2*t))/exp(3*t)
求微分方程[img=269x55]17da6536a9fba07.png[/img]的通解; ( ) A: (C15*sin(2*t))/exp(3*t) + (C16*sin(2*t))/exp(3*t) B: (C15*cos(2*t))/exp(3*t) - (C16*sin(2*t))/exp(3*t) C: (C15*cos(2*t))/exp(3*t) + (C16*cos(2*t))/exp(3*t) D: (C15*cos(2*t))/exp(3*t) + (C16*sin(2*t))/exp(3*t)
设\(z = {e^{x - 2y}}\),而\(x = \sin t\),\(y = {t^3}\),则全导数\( { { dz} \over {dt}} = \) A: \({e^{\sin t - {t^3}}}(\cos t - 6{t^2})\) B: \({e^{\sin t - 2{t^3}}}(\sin t - 6{t^2})\) C: \({e^{\cos t - 2{t^3}}}(\cos t - 6{t^2})\) D: \({e^{\sin t - 2{t^3}}}(\cos t - 6{t^2})\)
设\(z = {e^{x - 2y}}\),而\(x = \sin t\),\(y = {t^3}\),则全导数\( { { dz} \over {dt}} = \) A: \({e^{\sin t - {t^3}}}(\cos t - 6{t^2})\) B: \({e^{\sin t - 2{t^3}}}(\sin t - 6{t^2})\) C: \({e^{\cos t - 2{t^3}}}(\cos t - 6{t^2})\) D: \({e^{\sin t - 2{t^3}}}(\cos t - 6{t^2})\)