以下正确的定义语句和赋值语句是 A: intb[3][5],(*p)[3],(*q)[5];p=b;q=b B: f1oatb[3][5],*p[3];p[0]=b[0];p[2]=*b+4 C: doubleb[3][5],s[5][3],*q;q=b;s=q D: intb[10],*q;char*s;q=b;s=b
以下正确的定义语句和赋值语句是 A: intb[3][5],(*p)[3],(*q)[5];p=b;q=b B: f1oatb[3][5],*p[3];p[0]=b[0];p[2]=*b+4 C: doubleb[3][5],s[5][3],*q;q=b;s=q D: intb[10],*q;char*s;q=b;s=b
构造下列推理的证明。 (1)前提:¬P∨Q, ¬(Q∧R),R;结论:¬P。 (2)前提:(P→Q)→(Q→R),R→P;结论:Q→P。 (3)前提:P→(Q→R), ¬S∨P;结论:Q→(S→R)。 (4)前提:¬P∧¬Q;结论:¬(P∧Q)。 (5)前提:P→¬Q,R∨S,S→¬Q;结论:¬P
构造下列推理的证明。 (1)前提:¬P∨Q, ¬(Q∧R),R;结论:¬P。 (2)前提:(P→Q)→(Q→R),R→P;结论:Q→P。 (3)前提:P→(Q→R), ¬S∨P;结论:Q→(S→R)。 (4)前提:¬P∧¬Q;结论:¬(P∧Q)。 (5)前提:P→¬Q,R∨S,S→¬Q;结论:¬P
构造下列命题的真值表。 (1)¬(P→Q)∧Q。 (2)(P→¬Q)→¬Q。 (3)P→Q∨R。 (4)P↔¬Q。 (5)((P∨Q)→R)↔S。
构造下列命题的真值表。 (1)¬(P→Q)∧Q。 (2)(P→¬Q)→¬Q。 (3)P→Q∨R。 (4)P↔¬Q。 (5)((P∨Q)→R)↔S。
若已有以下定义和语句: #include int x=4,y=3,*p,*q,*s; p=&x; q=&y; s=q; q=NULL; 则下面分别给出的四条语句中,错误的是() A: *q=0; B: s=p; C: *p=x; D: *p=*s;
若已有以下定义和语句: #include int x=4,y=3,*p,*q,*s; p=&x; q=&y; s=q; q=NULL; 则下面分别给出的四条语句中,错误的是() A: *q=0; B: s=p; C: *p=x; D: *p=*s;
由前提“(p→q)∧(r→s)”和“(p∨r)”,可得出结论( ) A: ¬q∧s B: ¬(¬q∧¬s) C: ¬(q∨s) D: q∧s
由前提“(p→q)∧(r→s)”和“(p∨r)”,可得出结论( ) A: ¬q∧s B: ¬(¬q∧¬s) C: ¬(q∨s) D: q∧s
利用反证法证明:R∨S,R→¬Q,S→¬Q,P→Q=>¬P请将下面推理论证的过程补充完整。(说明:输入答案时,不要输入多余的空格)证明过程如下:(1)( ) 假设前提 (2)P→Q P(3) Q T(1)(2) I(4)S→¬Q P(5)( ) T(3)(4) I(6)R∨S P(7)R T(5)(6) I(8)R→¬Q P(9)¬Q T(7)(8) I(10)( )矛盾 T(3)(9) I
利用反证法证明:R∨S,R→¬Q,S→¬Q,P→Q=>¬P请将下面推理论证的过程补充完整。(说明:输入答案时,不要输入多余的空格)证明过程如下:(1)( ) 假设前提 (2)P→Q P(3) Q T(1)(2) I(4)S→¬Q P(5)( ) T(3)(4) I(6)R∨S P(7)R T(5)(6) I(8)R→¬Q P(9)¬Q T(7)(8) I(10)( )矛盾 T(3)(9) I
分别写出下列前提推出的结论(1) ┐p∨q, q→r, ┐r______ (2) p∨q, p→r, q→s______ (3) ┐p→q, p→r, r→s______ (4) p, ┐p∨r, ┐r∨s______ A.s B.p C.r∨s D. ┐p E.q∨s F. ┐r G.r→s H.r→p
分别写出下列前提推出的结论(1) ┐p∨q, q→r, ┐r______ (2) p∨q, p→r, q→s______ (3) ┐p→q, p→r, r→s______ (4) p, ┐p∨r, ┐r∨s______ A.s B.p C.r∨s D. ┐p E.q∨s F. ┐r G.r→s H.r→p
请用归谬赋值法判定下列命题是否为重言式:((p→q)∧(r→s))∨(p∨r)→q∨s((p→q)∧(r→s))∨(¬q∨¬s)→¬p∨¬r((p→q)∧(r→s))∧(p∧r)→q∧s(f∨g→(q→(i«k)))∧(q∧i)∧(q∨m→f)→(i«k)
请用归谬赋值法判定下列命题是否为重言式:((p→q)∧(r→s))∨(p∨r)→q∨s((p→q)∧(r→s))∨(¬q∨¬s)→¬p∨¬r((p→q)∧(r→s))∧(p∧r)→q∧s(f∨g→(q→(i«k)))∧(q∧i)∧(q∨m→f)→(i«k)
以(1)p∨q∨﹁r、(2)(p∨q)→(s∧﹁q)、(3)r为前提推出结论p∧r,所用的推理形式有
以(1)p∨q∨﹁r、(2)(p∨q)→(s∧﹁q)、(3)r为前提推出结论p∧r,所用的推理形式有
已知一个单链表中,指针q指向指针p的前趋结点,若在指针q所指结点和指针p所指结点之间插入指针s所指结点,则需执行( ) A: q→next=s;p→next=s; B: q→next=s;s→next=p; C: q→next=s;q→next=p; D: q→next=s;s→next=q;
已知一个单链表中,指针q指向指针p的前趋结点,若在指针q所指结点和指针p所指结点之间插入指针s所指结点,则需执行( ) A: q→next=s;p→next=s; B: q→next=s;s→next=p; C: q→next=s;q→next=p; D: q→next=s;s→next=q;