求此函数的 定义域:[tex=7.714x2.786]tcvKohRPxNXSEPLaVgP/PSpR8oshE0LxxNsROcWvv2SznUyIzJ6GsAeBPdcZUGuM[/tex]
求此函数的 定义域:[tex=7.714x2.786]tcvKohRPxNXSEPLaVgP/PSpR8oshE0LxxNsROcWvv2SznUyIzJ6GsAeBPdcZUGuM[/tex]
利用数列极限的定义证明极限:[tex=7.714x2.786]OqU0SQaVHd2x+OGLCy0gvbnBdqyRL3fXll51asuCZWkzJRNbRTxtQBWcnJIRZuQfTMdKgbJsbsgTzq9i0FvwfQ==[/tex]
利用数列极限的定义证明极限:[tex=7.714x2.786]OqU0SQaVHd2x+OGLCy0gvbnBdqyRL3fXll51asuCZWkzJRNbRTxtQBWcnJIRZuQfTMdKgbJsbsgTzq9i0FvwfQ==[/tex]
证明:[tex=7.714x2.786]0W5nri6oRolSBuS9Rv48HOzKBKEFKU83y2ckCvBVZA6aCSv6gU45SHhpdWd8hosg0nlOejBNlJ8O8jalo9ri6Q==[/tex],其中 [tex=0.714x1.286]LA74ioWWkXdGbHCtFk/Sog==[/tex] 为圆;
证明:[tex=7.714x2.786]0W5nri6oRolSBuS9Rv48HOzKBKEFKU83y2ckCvBVZA6aCSv6gU45SHhpdWd8hosg0nlOejBNlJ8O8jalo9ri6Q==[/tex],其中 [tex=0.714x1.286]LA74ioWWkXdGbHCtFk/Sog==[/tex] 为圆;
用定积分的分部积分法求下列积分:[tex=7.714x2.786]BbewjhaCBSbtbcvUepkvoPOb+nixX7Arcl/cnBlCbt4MsYEaT7Q4+idacV71IULgLDMD7tM7OxS/rIcD2ozTuA==[/tex]
用定积分的分部积分法求下列积分:[tex=7.714x2.786]BbewjhaCBSbtbcvUepkvoPOb+nixX7Arcl/cnBlCbt4MsYEaT7Q4+idacV71IULgLDMD7tM7OxS/rIcD2ozTuA==[/tex]
克拉佩龙-克劳修斯方程[tex=7.714x2.786]x7pC7SmqTeQSdHe+Z5cwm5vikuSQNSSUgjmqOgo7EVrjY/jJIen1euug5tyr4jlu8SJYKH4dxUTabRDNJkCnilVBNn4MJRLLJymR4GRh8kY=[/tex]的适用条件是[input=type:blank,size:4][/input]。
克拉佩龙-克劳修斯方程[tex=7.714x2.786]x7pC7SmqTeQSdHe+Z5cwm5vikuSQNSSUgjmqOgo7EVrjY/jJIen1euug5tyr4jlu8SJYKH4dxUTabRDNJkCnilVBNn4MJRLLJymR4GRh8kY=[/tex]的适用条件是[input=type:blank,size:4][/input]。
设 [tex=7.714x2.786]3BT1BgBZQ5uJXxD5dg+w2+YGDC4+ymzaBK6m/ZsaOdrcP/JF/1oDYBeUj43sHgwSS3RL1oFwm/8OCEqb5KHy7m2YaBjxg8bgsulRtuYQVCc=[/tex],[tex=8.5x2.786]tAg4kjefm91yBdigy4ffjFUqSmTPouM4VlZZcHOi5PIHmF8U7nDAuNl25T3rY2tjui5/xpT4jXHgVig699YJmQmm1xsZhrL+47dENpk/u1o=[/tex], 求[tex=2.786x1.143]Px4s+PosevWooBpZPidJvg==[/tex]和[tex=2.786x1.143]7wkpzr1DMWqRUSPbHu6A2g==[/tex].
设 [tex=7.714x2.786]3BT1BgBZQ5uJXxD5dg+w2+YGDC4+ymzaBK6m/ZsaOdrcP/JF/1oDYBeUj43sHgwSS3RL1oFwm/8OCEqb5KHy7m2YaBjxg8bgsulRtuYQVCc=[/tex],[tex=8.5x2.786]tAg4kjefm91yBdigy4ffjFUqSmTPouM4VlZZcHOi5PIHmF8U7nDAuNl25T3rY2tjui5/xpT4jXHgVig699YJmQmm1xsZhrL+47dENpk/u1o=[/tex], 求[tex=2.786x1.143]Px4s+PosevWooBpZPidJvg==[/tex]和[tex=2.786x1.143]7wkpzr1DMWqRUSPbHu6A2g==[/tex].
圆管中层流速分布式为[tex=7.714x2.786]tyTCqpgKS1CIOl4vzK5eKSo+zapPiV1av6wc6q5RHVMURz5hs331DMrpXxc4KW1g[/tex] 求切应力在 $r$ 方向上的分布,并将流速和切应力以图示之。
圆管中层流速分布式为[tex=7.714x2.786]tyTCqpgKS1CIOl4vzK5eKSo+zapPiV1av6wc6q5RHVMURz5hs331DMrpXxc4KW1g[/tex] 求切应力在 $r$ 方向上的分布,并将流速和切应力以图示之。
指出不等式[tex=7.714x2.786]TFubMoQnPAgAbcbmkgtxlT0E4MIFQA7do0bd/Nt9OcLPEbiMorCCVpmdN3jgi+OJ[/tex]所确定的区域与闭区域,并指明它是有界的还是无界的?是单连通区域还是多连通区域?
指出不等式[tex=7.714x2.786]TFubMoQnPAgAbcbmkgtxlT0E4MIFQA7do0bd/Nt9OcLPEbiMorCCVpmdN3jgi+OJ[/tex]所确定的区域与闭区域,并指明它是有界的还是无界的?是单连通区域还是多连通区域?
指出下列不等式所确定的区域与闭区域,并指明它是有界的还是无界的? 是单连通域还是多连通域?[tex=7.714x2.786]Mb3DABvy91tZeOpMRXfUKXaaX7aOKWu1tZLIs8gUSOI1oGSDaker4U5nGCTBgW75[/tex]
指出下列不等式所确定的区域与闭区域,并指明它是有界的还是无界的? 是单连通域还是多连通域?[tex=7.714x2.786]Mb3DABvy91tZeOpMRXfUKXaaX7aOKWu1tZLIs8gUSOI1oGSDaker4U5nGCTBgW75[/tex]
设级数[tex=3.571x2.714]LCs/jzl+nr3KBTJXBn4IiTaMdvoS/p/hGL/Jv9ntegzmzbVBv3v1HeKEgBlLcyLM[/tex]的收敛半径为[tex=7.286x1.357]sTdvH6zX0iZNqILTrUec+Q==[/tex],证明:级数[tex=7.143x2.714]LCs/jzl+nr3KBTJXBn4IiVrR/a63aRDgwm6Ulx0DCkqQZXUGezi8qQqRicSofTkUWyb3f6mqFTz2twehW0bB7Q==[/tex]的收敛半径为[tex=7.714x2.786]88n1NtKriG0YM72QT5w50ARKMC3GTCC7OGxgHAYlBdhewQuMEfErAwKQ9wpi7IxVHJewFuEn04JodLhBCFDNBA==[/tex].
设级数[tex=3.571x2.714]LCs/jzl+nr3KBTJXBn4IiTaMdvoS/p/hGL/Jv9ntegzmzbVBv3v1HeKEgBlLcyLM[/tex]的收敛半径为[tex=7.286x1.357]sTdvH6zX0iZNqILTrUec+Q==[/tex],证明:级数[tex=7.143x2.714]LCs/jzl+nr3KBTJXBn4IiVrR/a63aRDgwm6Ulx0DCkqQZXUGezi8qQqRicSofTkUWyb3f6mqFTz2twehW0bB7Q==[/tex]的收敛半径为[tex=7.714x2.786]88n1NtKriG0YM72QT5w50ARKMC3GTCC7OGxgHAYlBdhewQuMEfErAwKQ9wpi7IxVHJewFuEn04JodLhBCFDNBA==[/tex].