3.设函数$f(x)={{x}^{4}}\sin x$,则${{f}^{(9)}}(0)=$( )。 A: $\frac{9!}{5!}$ B: $\frac{5!}{9!}$ C: $\frac{1}{5!}$ D: $0$
3.设函数$f(x)={{x}^{4}}\sin x$,则${{f}^{(9)}}(0)=$( )。 A: $\frac{9!}{5!}$ B: $\frac{5!}{9!}$ C: $\frac{1}{5!}$ D: $0$
已知函数f(x)是定义在实数集R上的奇函数,且f(x)在[3,5]上是增函数,若f(5)=-2,则f(-5)、f(-3)、f(0)的大小关系是( ). A: f(0)<(-5)<f(-3) B: f(-5)<f(-3)<f(0) C: f(-3)<f(-5)<f(0) D: f(0)<f(-3)<f(-5)
已知函数f(x)是定义在实数集R上的奇函数,且f(x)在[3,5]上是增函数,若f(5)=-2,则f(-5)、f(-3)、f(0)的大小关系是( ). A: f(0)<(-5)<f(-3) B: f(-5)<f(-3)<f(0) C: f(-3)<f(-5)<f(0) D: f(0)<f(-3)<f(-5)
华氏与摄氏温度之间的相互换算公式为( )。 A: ℃=9*(F/5)+32 B: F=5*(℃-32)/9 C: ℃=5*(F-32)/9 D: F=9*(℃/5)-32
华氏与摄氏温度之间的相互换算公式为( )。 A: ℃=9*(F/5)+32 B: F=5*(℃-32)/9 C: ℃=5*(F-32)/9 D: F=9*(℃/5)-32
设函数y=f(x)有二阶导数,对任意实数x,满足:f(x)=-f(-x)及f(x)=f(x+1),若f'(1)>0,则有 ( ) A: f"(-5)≤f'(-5)≤f(-5) B: f(-5)=f"(-5)<f'(-5) C: f'(-5)≤f(-5)≤f"(-5) D: f(-5)<f(-5)=f"(-5)
设函数y=f(x)有二阶导数,对任意实数x,满足:f(x)=-f(-x)及f(x)=f(x+1),若f'(1)>0,则有 ( ) A: f"(-5)≤f'(-5)≤f(-5) B: f(-5)=f"(-5)<f'(-5) C: f'(-5)≤f(-5)≤f"(-5) D: f(-5)<f(-5)=f"(-5)
设文件A.bmp位于F盘T文件夹中的子文件夹G中,文件A的完整路径为()。 A: F:/T:/ B: bmp C: F/T:/ D: bmp E: F:/T:/G:/ F: bmp G: F/T/G/ H: bmp
设文件A.bmp位于F盘T文件夹中的子文件夹G中,文件A的完整路径为()。 A: F:/T:/ B: bmp C: F/T:/ D: bmp E: F:/T:/G:/ F: bmp G: F/T/G/ H: bmp
UTC与UT1应保持在()。 A: ±0 B: 5 C: ±0 D: 9 E: ±0m.5 F: ±0m.9
UTC与UT1应保持在()。 A: ±0 B: 5 C: ±0 D: 9 E: ±0m.5 F: ±0m.9
已知函数f(x)=,则f(0)+f(-1)=[ ]A、9
已知函数f(x)=,则f(0)+f(-1)=[ ]A、9
设在[0,1]上f""(x)>0,则f"(0)f"(1),f(1)-f(0)或f(0)-f(1)的大小顺序是() A: f"(1)>f"(0)>f(1)-f(0)。 B: f"(1)>f(1)-f(0)>f"(0)。 C: f(1)-f(0)>f"(1)>f"(0)。 D: f"(1)>f(0)-f(1)>f"(0)。
设在[0,1]上f""(x)>0,则f"(0)f"(1),f(1)-f(0)或f(0)-f(1)的大小顺序是() A: f"(1)>f"(0)>f(1)-f(0)。 B: f"(1)>f(1)-f(0)>f"(0)。 C: f(1)-f(0)>f"(1)>f"(0)。 D: f"(1)>f(0)-f(1)>f"(0)。
函数f(x)=x²-5x+8,则f’(x)=3x²-5,f’(0)=-5
函数f(x)=x²-5x+8,则f’(x)=3x²-5,f’(0)=-5
设f(x)=x2+bx+x满足关系式f(1+x)=f(1-x),则下述结论中,正确的是( ). A: f(0)>f(1)>f(3) B: f(1)>f(0)>f(3) C: f(3)>f(1)>f(0) D: f(3)>f(0)>f(1) E: f(1)>f(3)>f(0)
设f(x)=x2+bx+x满足关系式f(1+x)=f(1-x),则下述结论中,正确的是( ). A: f(0)>f(1)>f(3) B: f(1)>f(0)>f(3) C: f(3)>f(1)>f(0) D: f(3)>f(0)>f(1) E: f(1)>f(3)>f(0)