设\( \Omega \) 是由\( 1 \le x \le 2 \) ,\( 0 \le y \le 1 \) ,\( 0 \le z \le 2 \) 所围区域,则\( \mathop{\int\!\!\!\int\!\!\!\int}\limits_{\kern-5.5pt \Omega } { { x^2}yz} dv \) =\( {7 \over 3} \)
设\( \Omega \) 是由\( 1 \le x \le 2 \) ,\( 0 \le y \le 1 \) ,\( 0 \le z \le 2 \) 所围区域,则\( \mathop{\int\!\!\!\int\!\!\!\int}\limits_{\kern-5.5pt \Omega } { { x^2}yz} dv \) =\( {7 \over 3} \)
曲线$\left\{ \matrix{ {x^2} + {y^2} + {z^2} = 9 \cr y = x \cr} \right.$的参数方程为( ). A: $$\left\{ \matrix{ x = \sqrt 3 \cos t \cr y = \sqrt 3 \cos t \cr z = \sqrt 3 \sin t \cr} \right.(0 \le t \le 2\pi )$$ B: $$\left\{ \matrix{ x = {3 \over {\sqrt 2 }}\cos t\cr y = {3 \over {\sqrt 2 }}\cos t \cr z = 3\sin t \cr} \right.(0 \le t \le 2\pi )$$ C: $$\left\{ \matrix{ x = \cos t\cr y = \cos t\cr z = \sin t \cr} \right.(0 \le t \le 2\pi )$$ D: $$\left\{ \matrix{ x = {{\sqrt 3 } \over 3}\cos t\cr y = {{\sqrt 3 } \over 3}\cos t \cr z = {{\sqrt 3 } \over 3}\sin t\cr} \right.(0 \le t \le 2\pi )$$
曲线$\left\{ \matrix{ {x^2} + {y^2} + {z^2} = 9 \cr y = x \cr} \right.$的参数方程为( ). A: $$\left\{ \matrix{ x = \sqrt 3 \cos t \cr y = \sqrt 3 \cos t \cr z = \sqrt 3 \sin t \cr} \right.(0 \le t \le 2\pi )$$ B: $$\left\{ \matrix{ x = {3 \over {\sqrt 2 }}\cos t\cr y = {3 \over {\sqrt 2 }}\cos t \cr z = 3\sin t \cr} \right.(0 \le t \le 2\pi )$$ C: $$\left\{ \matrix{ x = \cos t\cr y = \cos t\cr z = \sin t \cr} \right.(0 \le t \le 2\pi )$$ D: $$\left\{ \matrix{ x = {{\sqrt 3 } \over 3}\cos t\cr y = {{\sqrt 3 } \over 3}\cos t \cr z = {{\sqrt 3 } \over 3}\sin t\cr} \right.(0 \le t \le 2\pi )$$
(接上题)(2)设经分界面反射的波的振幅和入射波的振幅相等,则反射波的波函数是 A: $y_{r}=Acos \left(2\pi \nu t+\dfrac{2\pi\nu}{u}x-\dfrac{\pi}{2} \right),0\le x\le\dfrac{3\lambda}{4}$ B: $y_{r}=Acos \left(2\pi \nu t+\dfrac{2\pi\nu}{u}x \right),0\le x\le\dfrac{3\lambda}{4}$ C: $y_{r}=Acos \left(2\pi \nu t+\dfrac{2\pi\nu}{u}x-\dfrac{\pi}{4} \right),0\le x\le\dfrac{3\lambda}{4}$ D: $y_{r}=Acos\left(2\pi \nu t-\dfrac{2\pi\nu}{u}x \right),0\le x\le\dfrac{3\lambda}{4}$
(接上题)(2)设经分界面反射的波的振幅和入射波的振幅相等,则反射波的波函数是 A: $y_{r}=Acos \left(2\pi \nu t+\dfrac{2\pi\nu}{u}x-\dfrac{\pi}{2} \right),0\le x\le\dfrac{3\lambda}{4}$ B: $y_{r}=Acos \left(2\pi \nu t+\dfrac{2\pi\nu}{u}x \right),0\le x\le\dfrac{3\lambda}{4}$ C: $y_{r}=Acos \left(2\pi \nu t+\dfrac{2\pi\nu}{u}x-\dfrac{\pi}{4} \right),0\le x\le\dfrac{3\lambda}{4}$ D: $y_{r}=Acos\left(2\pi \nu t-\dfrac{2\pi\nu}{u}x \right),0\le x\le\dfrac{3\lambda}{4}$
设D:\(0 \le x \le \pi ,0 \le y \le {\pi \over 2}\),则\(\int\!\!\!\int\limits_D {sinxcosydxdy} \)的值为______
设D:\(0 \le x \le \pi ,0 \le y \le {\pi \over 2}\),则\(\int\!\!\!\int\limits_D {sinxcosydxdy} \)的值为______
在其定义区间上连续的函数是( )。 A: \(f(x) = \left\{ {\matrix{ {x\quad ,{\rm{0}} \le x \le {\rm{1}}} \cr {1 - x\quad ,1 < x \le 2} \cr } } \right.\) B: \(f(x) = \left\{ {\matrix{ {x\quad ,0 < x \le 1 } \cr {2 - x\quad ,1 < x \le 2} \cr } } \right.\) C: \(f(x) = \left\{ {\matrix{ {x\;\quad ,0 \le x < 1} \cr {0\;\quad \quad ,x = 1} \cr {2 - x\quad ,1 < x \le 2} \cr } } \right.\) D: \(f(x) = \left\{ {\matrix{ { { 1 \over {x - 1}}\quad ,0 \le x \le 1} \cr {0\quad ,1 \le x \le 2} \cr } } \right.\)
在其定义区间上连续的函数是( )。 A: \(f(x) = \left\{ {\matrix{ {x\quad ,{\rm{0}} \le x \le {\rm{1}}} \cr {1 - x\quad ,1 < x \le 2} \cr } } \right.\) B: \(f(x) = \left\{ {\matrix{ {x\quad ,0 < x \le 1 } \cr {2 - x\quad ,1 < x \le 2} \cr } } \right.\) C: \(f(x) = \left\{ {\matrix{ {x\;\quad ,0 \le x < 1} \cr {0\;\quad \quad ,x = 1} \cr {2 - x\quad ,1 < x \le 2} \cr } } \right.\) D: \(f(x) = \left\{ {\matrix{ { { 1 \over {x - 1}}\quad ,0 \le x \le 1} \cr {0\quad ,1 \le x \le 2} \cr } } \right.\)
设D是由\( 0 \le x \le 1 \) ,\( 0 \le y \le 1 \) 所围区域,则\( \int\!\!\!\int\limits_D {\left| { { x^2} + {y^2} - 1} \right|} d\sigma \) = \( {\pi \over 4} - {1 \over 2} \) 。
设D是由\( 0 \le x \le 1 \) ,\( 0 \le y \le 1 \) 所围区域,则\( \int\!\!\!\int\limits_D {\left| { { x^2} + {y^2} - 1} \right|} d\sigma \) = \( {\pi \over 4} - {1 \over 2} \) 。
函数\(f(x) = \left\{ {\matrix{ { { x^2} - 1\;, - 1 \le x < 0} \cr {x\;\quad \;,0 \le x < 1} \cr {2 - x\;\quad ,1 \le x \le 2} \cr } } \right.\)在\(x =\)( )处间断。______
函数\(f(x) = \left\{ {\matrix{ { { x^2} - 1\;, - 1 \le x < 0} \cr {x\;\quad \;,0 \le x < 1} \cr {2 - x\;\quad ,1 \le x \le 2} \cr } } \right.\)在\(x =\)( )处间断。______
设\(D\)是由\( 0 \le x \le 1 \) ,\( 0 \le y \le 1 \) 所围区域,则\( \int\!\!\!\int\limits_D {x{y^2}} dxdy \) = \( {1 \over 6} \) 。
设\(D\)是由\( 0 \le x \le 1 \) ,\( 0 \le y \le 1 \) 所围区域,则\( \int\!\!\!\int\limits_D {x{y^2}} dxdy \) = \( {1 \over 6} \) 。
计算\(\int\!\!\!\int\limits_\sum { { x^2}dydz + {y^2}dzdx + {z^2}} dxdy\),其中\(\sum\)为长方体\(\Omega \)的整个表面外侧,\(\Omega = \{ (x,y,z)|0 \le x \le a,0 \le y \le b,0 \le z \le c\} \)。 A: \((a + b + c)abc\) B: \((a -b + c)abc\) C: \((a + b -c)abc\) D: \((a - b - c)abc\)
计算\(\int\!\!\!\int\limits_\sum { { x^2}dydz + {y^2}dzdx + {z^2}} dxdy\),其中\(\sum\)为长方体\(\Omega \)的整个表面外侧,\(\Omega = \{ (x,y,z)|0 \le x \le a,0 \le y \le b,0 \le z \le c\} \)。 A: \((a + b + c)abc\) B: \((a -b + c)abc\) C: \((a + b -c)abc\) D: \((a - b - c)abc\)
\(已知曲线弧L:y=\sqrt{1-x^2}(0\le x\le 1).则\int_{L}xyds=(\,)\) A: \[1\] B: \[\frac{1}{2}\] C: \[\frac{1}{3}\] D: \[\frac{1}{4}\]
\(已知曲线弧L:y=\sqrt{1-x^2}(0\le x\le 1).则\int_{L}xyds=(\,)\) A: \[1\] B: \[\frac{1}{2}\] C: \[\frac{1}{3}\] D: \[\frac{1}{4}\]