以下Student类可直接使用。 public class Student { private int number; private String name; private String clazz; private int score; public Student(int number, String name, String clazz, int score) { this.number = number; this.name = name; this.clazz = clazz; this.score = score; } // 省略getter/setter方法 } 在以下类中,按需求编写方法,完成对STUDENTS集合的操作 public class StreamTest { private static final List STUDENTS = create(); private static final String CLAZZ1 = "软件1班"; private static final String CLAZZ2 = "软件2班"; private static List create() { Student s1 = new Student(2018008, "张扬", CLAZZ2, 66); Student s2 = new Student(2018005, "刘飞", CLAZZ1, 92); Student s3 = new Student(2018007, "李明", CLAZZ2, 42); Student s4 = new Student(2018006, "赵勇", CLAZZ2, 56); Student s5 = new Student(2018002, "王磊", CLAZZ1, 81); Student s6 = new Student(2018010, "牛娜", CLAZZ1, 78); List students = new ArrayList<>(); students.add(s1);students.add(s2);students.add(s3); students.add(s4);students.add(s5);students.add(s6); return students; } public static void main(String[] args) { // 调用实现方法测试 } // 实现方法 } 说明: 需求描述中的指定X,均指方法的参数 所有方法均有返回值,尝试直接编程return语句,基于stream操作流直接返回所需结果 如果返回集合,使用List集合类型 尝试使用简写 注意过滤代码格式 方法1,获取成绩小于等于指定分数,的全部学生
以下Student类可直接使用。 public class Student { private int number; private String name; private String clazz; private int score; public Student(int number, String name, String clazz, int score) { this.number = number; this.name = name; this.clazz = clazz; this.score = score; } // 省略getter/setter方法 } 在以下类中,按需求编写方法,完成对STUDENTS集合的操作 public class StreamTest { private static final List STUDENTS = create(); private static final String CLAZZ1 = "软件1班"; private static final String CLAZZ2 = "软件2班"; private static List create() { Student s1 = new Student(2018008, "张扬", CLAZZ2, 66); Student s2 = new Student(2018005, "刘飞", CLAZZ1, 92); Student s3 = new Student(2018007, "李明", CLAZZ2, 42); Student s4 = new Student(2018006, "赵勇", CLAZZ2, 56); Student s5 = new Student(2018002, "王磊", CLAZZ1, 81); Student s6 = new Student(2018010, "牛娜", CLAZZ1, 78); List students = new ArrayList<>(); students.add(s1);students.add(s2);students.add(s3); students.add(s4);students.add(s5);students.add(s6); return students; } public static void main(String[] args) { // 调用实现方法测试 } // 实现方法 } 说明: 需求描述中的指定X,均指方法的参数 所有方法均有返回值,尝试直接编程return语句,基于stream操作流直接返回所需结果 如果返回集合,使用List集合类型 尝试使用简写 注意过滤代码格式 方法1,获取成绩小于等于指定分数,的全部学生
【单选题】NO 2 、NO 2 - 、NO 2 + 键角大小关系正确的是 。 A. NO 2 > NO 2 - >NO 2 + B. NO 2 + >NO 2 >NO 2 - C. NO 2 - > NO 2 >NO 2 + D. NO 2 + > NO 2 - >NO 2
【单选题】NO 2 、NO 2 - 、NO 2 + 键角大小关系正确的是 。 A. NO 2 > NO 2 - >NO 2 + B. NO 2 + >NO 2 >NO 2 - C. NO 2 - > NO 2 >NO 2 + D. NO 2 + > NO 2 - >NO 2
求定积分[img=179x43]17da65388c0b1ca.png[/img]; ( ) A: log(2^(1/2) + 1)/2 + 2^(1/2)/2 B: log(2^(1/2) + 1)/2 - 2^(1/2)/2 - 1/2 C: log(2^(1/2) + 1)/2 + 2^(1/2)/2 - 1/2 D: log(2^(1/2) + 1)/2 + 2^(1/2)/2 + 1/2
求定积分[img=179x43]17da65388c0b1ca.png[/img]; ( ) A: log(2^(1/2) + 1)/2 + 2^(1/2)/2 B: log(2^(1/2) + 1)/2 - 2^(1/2)/2 - 1/2 C: log(2^(1/2) + 1)/2 + 2^(1/2)/2 - 1/2 D: log(2^(1/2) + 1)/2 + 2^(1/2)/2 + 1/2
2 + 2 * (2 * 2 - 2) % 2 / 3
2 + 2 * (2 * 2 - 2) % 2 / 3
函数z=xsiny在点(1,π/4)处的两个偏导数分别为 A: √2/2,√2/2 B: √2/2,-√2/2 C: -√2/2,-√2/2 D: -√2/2,√2/2
函数z=xsiny在点(1,π/4)处的两个偏导数分别为 A: √2/2,√2/2 B: √2/2,-√2/2 C: -√2/2,-√2/2 D: -√2/2,√2/2
2×2×2×2×2
2×2×2×2×2
HbF的构成主要是() A: α2β2 B: α2δ2 C: ζ2ε2 D: α2γ2 E: ζ2γ2
HbF的构成主要是() A: α2β2 B: α2δ2 C: ζ2ε2 D: α2γ2 E: ζ2γ2
胎儿期血红蛋白HbF的分子组成为( )。 A: ζ2ε2 B: α2Aγ2、α2Gγ2 C: ζ2 Aγ2、ζ2Gγ2 D: ζ2 Aγ2、 E: α2δ2 、α2β2
胎儿期血红蛋白HbF的分子组成为( )。 A: ζ2ε2 B: α2Aγ2、α2Gγ2 C: ζ2 Aγ2、ζ2Gγ2 D: ζ2 Aγ2、 E: α2δ2 、α2β2
正常人血红蛋白多肽链的组成是 A: α2β2 B: α2γ2 C: α2ε2 D: α2δ2 E: σ2β2
正常人血红蛋白多肽链的组成是 A: α2β2 B: α2γ2 C: α2ε2 D: α2δ2 E: σ2β2
函数[img=79x27]180355ae2690a03.png[/img]在x=2处的二阶泰勒展开式为 A: exp(sin(2))+cos(2)*exp(sin(2))*(x-2)+exp(sin(2))*(sin(2)/2-cos(2)^2/2)*(x-2)^2 B: exp(sin(2))+cos(2)*exp(sin(2))*(x-2)-exp(sin(2))*(sin(2)/2-cos(2)^2/2)*(x-2)^2 C: exp(sin(2))+cos(2)*exp(sin(2))*(x-2)-exp(sin(2))*(sin(2)/2+cos(2)^2/2)*(x-2)^2 D: exp(sin(2))+cos(2)*exp(sin(2))*(x-2)+exp(sin(2))*(sin(2)/2+cos(2)^2/2)*(x-2)^2
函数[img=79x27]180355ae2690a03.png[/img]在x=2处的二阶泰勒展开式为 A: exp(sin(2))+cos(2)*exp(sin(2))*(x-2)+exp(sin(2))*(sin(2)/2-cos(2)^2/2)*(x-2)^2 B: exp(sin(2))+cos(2)*exp(sin(2))*(x-2)-exp(sin(2))*(sin(2)/2-cos(2)^2/2)*(x-2)^2 C: exp(sin(2))+cos(2)*exp(sin(2))*(x-2)-exp(sin(2))*(sin(2)/2+cos(2)^2/2)*(x-2)^2 D: exp(sin(2))+cos(2)*exp(sin(2))*(x-2)+exp(sin(2))*(sin(2)/2+cos(2)^2/2)*(x-2)^2