• 2022-06-30
    函数[img=79x27]180355ae2690a03.png[/img]在x=2处的二阶泰勒展开式为
    A: exp(sin(2))+cos(2)*exp(sin(2))*(x-2)+exp(sin(2))*(sin(2)/2-cos(2)^2/2)*(x-2)^2
    B: exp(sin(2))+cos(2)*exp(sin(2))*(x-2)-exp(sin(2))*(sin(2)/2-cos(2)^2/2)*(x-2)^2
    C: exp(sin(2))+cos(2)*exp(sin(2))*(x-2)-exp(sin(2))*(sin(2)/2+cos(2)^2/2)*(x-2)^2
    D: exp(sin(2))+cos(2)*exp(sin(2))*(x-2)+exp(sin(2))*(sin(2)/2+cos(2)^2/2)*(x-2)^2
  • B

    举一反三

    内容

    • 0

      求微分方程[img=269x55]17da6536a9fba07.png[/img]的通解; ( ) A: (C15*sin(2*t))/exp(3*t) + (C16*sin(2*t))/exp(3*t) B: (C15*cos(2*t))/exp(3*t) - (C16*sin(2*t))/exp(3*t) C: (C15*cos(2*t))/exp(3*t) + (C16*cos(2*t))/exp(3*t) D: (C15*cos(2*t))/exp(3*t) + (C16*sin(2*t))/exp(3*t)

    • 1

      求微分方程 [img=635x61]17da6537085dd29.png[/img] 的特解; ( ) A: (3*sin(5*x))/exp(2*x) B: exp(2*x) C: (3*sin(5*x)) D: (3*cos(5*x))/exp(2*x)

    • 2

      曲线积分$$\int_{(0,0}^{(x,y)}(2x\cos y-y^2\sin x)dx+(2y\cos x-x^2\sin y)dy=$$ A: $y^2\cos x+x^2\cos y$ B: $x^2\cos x+y^2\cos y$ C: $x^2\sin y+y^2\sin x$ D: $x^2\sin x+y^2\sin y$

    • 3

      一阶常微分方程[img=152x26]1802e4d6075ee4f.png[/img]的通解为 A: sin(2*t)/5-cos(2*t)/10+C*exp(-4*t) B: sin(2*t)/7+cos(2*t)/5-C*exp(-3*t) C: sin(2*t)/7-C*cos(2*t)/10+C*exp(-2*t) D: sin(2*t)/7-cos(2*t)/7+C*exp(-5*t)

    • 4

      3. $(2x\cos y-{{y}^{2}}\sin x)dx+(2y\cos x-{{x}^{2}}\sin y)dy$的原函数是 ( ) A: ${{x}^{2}}\sin y-{{y}^{2}}\sin x+C$ B: ${{x}^{2}}\sin y+{{y}^{2}}\sin x+C$ C: ${{x}^{2}}\cos y-{{y}^{2}}\cos x+C$ D: ${{x}^{2}}\cos y+{{y}^{2}}\cos x+C$