• 2022-05-29 问题

    设[tex=0.643x1.286]o5UjRnde85SzOZZLbSYZ8A==[/tex]为曲线[tex=2.214x1.286]7hBOR3XUgr9l7aZVBwevGQ==[/tex],[tex=2.571x1.286]uaChpL/TVN+FZprb9u3IUA==[/tex],[tex=2.571x1.286]w5W+VzmOEXEV5vo7Xpok+A==[/tex]上相应于[tex=0.357x1.286]tv9NEQGfxmSBsvmqN3/Q7Q==[/tex]从0变到1的一段曲线弧,把对坐标的曲线积分[tex=8.929x2.214]EGRJDgMGadWW/SPvvoIo3gmzt3FzZLTPobgKYYA55SlUIkzjc9KZUBAv0nJgemJR[/tex]化为对弧长的曲线积分。

    设[tex=0.643x1.286]o5UjRnde85SzOZZLbSYZ8A==[/tex]为曲线[tex=2.214x1.286]7hBOR3XUgr9l7aZVBwevGQ==[/tex],[tex=2.571x1.286]uaChpL/TVN+FZprb9u3IUA==[/tex],[tex=2.571x1.286]w5W+VzmOEXEV5vo7Xpok+A==[/tex]上相应于[tex=0.357x1.286]tv9NEQGfxmSBsvmqN3/Q7Q==[/tex]从0变到1的一段曲线弧,把对坐标的曲线积分[tex=8.929x2.214]EGRJDgMGadWW/SPvvoIo3gmzt3FzZLTPobgKYYA55SlUIkzjc9KZUBAv0nJgemJR[/tex]化为对弧长的曲线积分。

  • 2022-06-29 问题

    设有向光滑曲线弧[tex=0.643x1.286]o5UjRnde85SzOZZLbSYZ8A==[/tex]在 [tex=1.857x1.286]j9TayWzddHzM0PQ/gL6C3Q==[/tex]面上的投影曲线为 [tex=0.714x1.286]LA74ioWWkXdGbHCtFk/Sog==[/tex]([tex=0.714x1.286]LA74ioWWkXdGbHCtFk/Sog==[/tex] 的正向 与[tex=0.643x1.286]o5UjRnde85SzOZZLbSYZ8A==[/tex] 的正向相应) , 且[tex=0.643x1.286]o5UjRnde85SzOZZLbSYZ8A==[/tex]在光滑曲面[tex=5.214x1.286]BYq3iptD4YA2ZSytB/IUxOsG3bxrYz6t2JPfxi1L+DQ=[/tex]上,函数[tex=5.0x1.286]h7D9akgTWC/YFLzijieamF+1ZZjOoq/M49xLYcpAE6g=[/tex],[tex=5.0x1.286]M6tK6VtiJBnp8m8nRWaq5gDWJCxwO4ftEuGFAYg4I2Y=[/tex],[tex=5.0x1.286]z9kbhTtCDPelPMm2FdkbNjwHEBwsSd6HkQL4YCQeQ0o=[/tex] 连续。证明 (1)[tex=14.571x2.214]EGRJDgMGadWW/SPvvoIo3g/d+bH/Ec24s6gUIkNZ0n9x7q7pZZ93FJAJplnWZnE04G6GArkLTgbn2IgrqJmsmA==[/tex][tex=21.071x2.214]8MPJw7gok5g4++q0MoKs6mO2IVs704OURUkwNwji4Qz7zgZ7kxcRlXfKQtl2WSzdVyB6shiCGDmI7Nmpu+1Btj071i0C6nNORNp+1VBQ9oetunfOzyer6Hh49OtnqAXU[/tex];(2)[tex=24.071x2.214]qpaoJR+8CIzAOBT18Pr7MwiAHSnh5ocw/xeNwmbGHmJtzg4egxZIKWH0ySZAdIqBZQB/m9cKdPMoIzo+n0HEbj9khubyAUwETS2ukCZQZQvM/C3uW5We5U4n0D37RmnOK6fqtZ4b++EVxev1FpAT3QYw2RW0fbWL2bFkTF0j8Ymnnj0IeV5AjGuWdDCzX3Q1[/tex]。此题意义为: 将空间曲线积分化为平面曲线积分。

    设有向光滑曲线弧[tex=0.643x1.286]o5UjRnde85SzOZZLbSYZ8A==[/tex]在 [tex=1.857x1.286]j9TayWzddHzM0PQ/gL6C3Q==[/tex]面上的投影曲线为 [tex=0.714x1.286]LA74ioWWkXdGbHCtFk/Sog==[/tex]([tex=0.714x1.286]LA74ioWWkXdGbHCtFk/Sog==[/tex] 的正向 与[tex=0.643x1.286]o5UjRnde85SzOZZLbSYZ8A==[/tex] 的正向相应) , 且[tex=0.643x1.286]o5UjRnde85SzOZZLbSYZ8A==[/tex]在光滑曲面[tex=5.214x1.286]BYq3iptD4YA2ZSytB/IUxOsG3bxrYz6t2JPfxi1L+DQ=[/tex]上,函数[tex=5.0x1.286]h7D9akgTWC/YFLzijieamF+1ZZjOoq/M49xLYcpAE6g=[/tex],[tex=5.0x1.286]M6tK6VtiJBnp8m8nRWaq5gDWJCxwO4ftEuGFAYg4I2Y=[/tex],[tex=5.0x1.286]z9kbhTtCDPelPMm2FdkbNjwHEBwsSd6HkQL4YCQeQ0o=[/tex] 连续。证明 (1)[tex=14.571x2.214]EGRJDgMGadWW/SPvvoIo3g/d+bH/Ec24s6gUIkNZ0n9x7q7pZZ93FJAJplnWZnE04G6GArkLTgbn2IgrqJmsmA==[/tex][tex=21.071x2.214]8MPJw7gok5g4++q0MoKs6mO2IVs704OURUkwNwji4Qz7zgZ7kxcRlXfKQtl2WSzdVyB6shiCGDmI7Nmpu+1Btj071i0C6nNORNp+1VBQ9oetunfOzyer6Hh49OtnqAXU[/tex];(2)[tex=24.071x2.214]qpaoJR+8CIzAOBT18Pr7MwiAHSnh5ocw/xeNwmbGHmJtzg4egxZIKWH0ySZAdIqBZQB/m9cKdPMoIzo+n0HEbj9khubyAUwETS2ukCZQZQvM/C3uW5We5U4n0D37RmnOK6fqtZ4b++EVxev1FpAT3QYw2RW0fbWL2bFkTF0j8Ymnnj0IeV5AjGuWdDCzX3Q1[/tex]。此题意义为: 将空间曲线积分化为平面曲线积分。

  • 1