判断整数n是否为奇数的条件表达式有()。 A: n-n/2*2 B: n%2==1 C: n & 1 D: (n & 1)==1
判断整数n是否为奇数的条件表达式有()。 A: n-n/2*2 B: n%2==1 C: n & 1 D: (n & 1)==1
判断整数n是否为奇数,可以使用的条件有()。 A: n-n/2*2==1 B: n % 2 C: (n & 1)==1 D: n & 1
判断整数n是否为奇数,可以使用的条件有()。 A: n-n/2*2==1 B: n % 2 C: (n & 1)==1 D: n & 1
下面哪个个方阵满足存在正整数\(n\),使得它的\(n\)次方是零矩阵? A: \(\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}\) B: \(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}\) C: \(\begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}\)
下面哪个个方阵满足存在正整数\(n\),使得它的\(n\)次方是零矩阵? A: \(\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}\) B: \(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}\) C: \(\begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}\)
将\(f(x)=e^x\)展开成\((x-3)\)的幂级数为( )。 A: \(\sum\limits_{n = 0}^\infty { { { { {(x - 3)}^n}} \over {n!}}} \matrix{ {} & {} \cr } ( - 1, 1)\) B: \({e^3}\sum\limits_{n = 0}^\infty { { { { {(x - 3)}^n}} \over {n!}}} \matrix{ {} & {} \cr } ( - 1, 1)\) C: \(\sum\limits_{n = 0}^\infty { { { { {(x - 3)}^n}} \over {n!}}} \matrix{ {} & {} \cr } ( - \infty , + \infty )\) D: \({e^3}\sum\limits_{n = 0}^\infty { { { { {(x - 3)}^n}} \over {n!}}} \matrix{ {} & {} \cr } ( - \infty , + \infty )\)
将\(f(x)=e^x\)展开成\((x-3)\)的幂级数为( )。 A: \(\sum\limits_{n = 0}^\infty { { { { {(x - 3)}^n}} \over {n!}}} \matrix{ {} & {} \cr } ( - 1, 1)\) B: \({e^3}\sum\limits_{n = 0}^\infty { { { { {(x - 3)}^n}} \over {n!}}} \matrix{ {} & {} \cr } ( - 1, 1)\) C: \(\sum\limits_{n = 0}^\infty { { { { {(x - 3)}^n}} \over {n!}}} \matrix{ {} & {} \cr } ( - \infty , + \infty )\) D: \({e^3}\sum\limits_{n = 0}^\infty { { { { {(x - 3)}^n}} \over {n!}}} \matrix{ {} & {} \cr } ( - \infty , + \infty )\)
已知a=5,b=6,c=7,d=8,m=2,n=2,执行(m=a>b)&&(n=c A: 2 B: 1 C: -1
已知a=5,b=6,c=7,d=8,m=2,n=2,执行(m=a>b)&&(n=c A: 2 B: 1 C: -1
将\(f(x) = {1 \over {1 + {x^2}}}\)展开成\(x\)的幂级数为( )。 A: \({1 \over {1 + {x^2}}} = \sum\limits_{n = 0}^\infty { { {( - 1)}^n}{x^{2n}}} \matrix{ {} & {} \cr } ( - \infty < x < + \infty )\) B: \({1 \over {1 + {x^2}}} = \sum\limits_{n = 0}^\infty { { {( - 1)}^n}{x^{2n}}} \matrix{ {} & {} \cr } ( - 1< x < 1)\) C: \({1 \over {1 + {x^2}}} = \sum\limits_{n = 0}^\infty { { {( - 1)}^n}{x^{2n}}} \matrix{ {} & {} \cr } ( - 1 < x < 1)\) D: \({1 \over {1 + {x^2}}} = \sum\limits_{n = 0}^\infty { { x^{2n}}} \matrix{ {} & {} \cr } ( - 1 < x < 1)\)
将\(f(x) = {1 \over {1 + {x^2}}}\)展开成\(x\)的幂级数为( )。 A: \({1 \over {1 + {x^2}}} = \sum\limits_{n = 0}^\infty { { {( - 1)}^n}{x^{2n}}} \matrix{ {} & {} \cr } ( - \infty < x < + \infty )\) B: \({1 \over {1 + {x^2}}} = \sum\limits_{n = 0}^\infty { { {( - 1)}^n}{x^{2n}}} \matrix{ {} & {} \cr } ( - 1< x < 1)\) C: \({1 \over {1 + {x^2}}} = \sum\limits_{n = 0}^\infty { { {( - 1)}^n}{x^{2n}}} \matrix{ {} & {} \cr } ( - 1 < x < 1)\) D: \({1 \over {1 + {x^2}}} = \sum\limits_{n = 0}^\infty { { x^{2n}}} \matrix{ {} & {} \cr } ( - 1 < x < 1)\)
\(A\)同上题,将其对角化\(A=S\Lambda S^{-1}\)的方阵\(S\)可以是 A: \(\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}\) B: \(\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}\) C: \(\begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}\)
\(A\)同上题,将其对角化\(A=S\Lambda S^{-1}\)的方阵\(S\)可以是 A: \(\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}\) B: \(\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}\) C: \(\begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}\)
设m、n和k都是int 型变量,且m=1,m=2,k=3,则以下的表达式中值为0的表达式是( ). A: m||n+k&&n-k B: !((m<n)&&!k||1) C: m<=n D: m&&k
设m、n和k都是int 型变量,且m=1,m=2,k=3,则以下的表达式中值为0的表达式是( ). A: m||n+k&&n-k B: !((m<n)&&!k||1) C: m<=n D: m&&k
已有定义语句:int m=0,n=1;执行表达式(m=5<3)&&(n=7>9)后,n的值是( )。 A: 0 B: 1 C: 2 D: 3
已有定义语句:int m=0,n=1;执行表达式(m=5<3)&&(n=7>9)后,n的值是( )。 A: 0 B: 1 C: 2 D: 3
已知a=5,b=6,c=7,d=8,m=2,n=2,执行(m=a>;b)&&(n=c A: 1 B: 0 C: 2 D: -1
已知a=5,b=6,c=7,d=8,m=2,n=2,执行(m=a>;b)&&(n=c A: 1 B: 0 C: 2 D: -1