• 2022-06-06
    将\(f(x)=e^x\)展开成\((x-3)\)的幂级数为( )。
    A: \(\sum\limits_{n = 0}^\infty { { { { {(x - 3)}^n}} \over {n!}}} \matrix{ {} & {} \cr } ( - 1, 1)\)
    B: \({e^3}\sum\limits_{n = 0}^\infty { { { { {(x - 3)}^n}} \over {n!}}} \matrix{ {} & {} \cr } ( - 1, 1)\)
    C: \(\sum\limits_{n = 0}^\infty { { { { {(x - 3)}^n}} \over {n!}}} \matrix{ {} & {} \cr } ( - \infty , + \infty )\)
    D: \({e^3}\sum\limits_{n = 0}^\infty { { { { {(x - 3)}^n}} \over {n!}}} \matrix{ {} & {} \cr } ( - \infty , + \infty )\)
  • D

    举一反三

    内容

    • 0

      设级数$\sum\limits_{n=1}^\infty u_n$ 收敛,则下列级数收敛的是() A: $\sum\limits_{n=1}^\infty \left(u_n+1\right)$ B: $\sum\limits_{n=1}^\infty u_{2n}$ C: $\sum\limits_{n=1}^\infty u_{n+1}$ D: $\sum\limits_{n=1}^\infty u_{2n+1}$

    • 1

      \( \lim \limits_{n \to \infty } { { n!} \over { { n^n}}} = \)______ 。

    • 2

      \(\lim \limits_{n \to \infty } { { {\rm{3}}{n^2}{\rm{ + 8}}} \over { { n^2} - n}} = \) .______

    • 3

      下面级数求和错误的是 A: $\sum_{n=0}^\infty q^n = \frac{1}{1-q} (0\lt q\lt1) $ B: $\sum_{n=1}^\infty \frac{x^{2^{n-1}}}{1-x^{2^n}} = \frac{x}{1-x} (|x|\lt 1) $ C: $\sum_{n=1}^\infty \frac{1}{{n!}} = e $ D: $\sum_{n=1}^\infty \frac{x^{2^{n-1}}}{1-x^{2^n}} = \frac{1}{1-x} (x>1) $

    • 4

      函数\(f(x) = x^2,\; x \in [-\pi,\pi]\)的Fourier级数为 A: \(\frac{\pi^2}{3}+4\Sigma_{n=1}^{\infty} \frac{(-1)^n}{n^2} \sin nx ,\; x \in [-\pi,\pi]\) B: \(\frac{\pi^2}{3}+4\Sigma_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cos nx ,\; x \in [-\pi,\pi]\) C: \(\frac{2\pi^2}{3}+4\Sigma_{n=1}^{\infty} \frac{(-1)^n}{n^2} \sin nx ,\; x \in [-\pi,\pi]\) D: \(\frac{2\pi^2}{3}+4\Sigma_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cos nx ,\; x \in [-\pi,\pi]\)