设\(z = xy{e^{\sin xy}}\),则\({z'_y} = \)( )。 A: \(x{e^{\sin xy}}\left( {1 + xy\cos xy} \right)\) B: \(y{e^{\sin xy}}\left( {1 + xy\cos xy} \right)\) C: \(x{e^{\sin xy}}\left( {1 + y\cos xy} \right)\) D: \(x{e^{\sin xy}}\left( {1 - xy\cos xy} \right)\)
设\(z = xy{e^{\sin xy}}\),则\({z'_y} = \)( )。 A: \(x{e^{\sin xy}}\left( {1 + xy\cos xy} \right)\) B: \(y{e^{\sin xy}}\left( {1 + xy\cos xy} \right)\) C: \(x{e^{\sin xy}}\left( {1 + y\cos xy} \right)\) D: \(x{e^{\sin xy}}\left( {1 - xy\cos xy} \right)\)
设函数z=f(x,y)=xy/(x2+y2),则下列结论中不正确的是() A: f(1,y/x)=xy/(x+y) B: f(1,x/y)=xy/(x+y) C: f(1/x,1/y)=xy/(x+y) D: f(x+y,x-y)=xy/(x+y)
设函数z=f(x,y)=xy/(x2+y2),则下列结论中不正确的是() A: f(1,y/x)=xy/(x+y) B: f(1,x/y)=xy/(x+y) C: f(1/x,1/y)=xy/(x+y) D: f(x+y,x-y)=xy/(x+y)
函数f(xy,)=xy在条件x+y=1下的极大值为()。 A: 1/4 B: 1/2 C: 1 D: 2
函数f(xy,)=xy在条件x+y=1下的极大值为()。 A: 1/4 B: 1/2 C: 1 D: 2
设二维随机变量(X,Y)的联合分布列为 XY -1 0 1 -1 1 1/6 1/9 2/9 1/3 0 1/6则P{XY=1}为( ) A: 0 B: 1/6 C: 1/3 D: 2/3
设二维随机变量(X,Y)的联合分布列为 XY -1 0 1 -1 1 1/6 1/9 2/9 1/3 0 1/6则P{XY=1}为( ) A: 0 B: 1/6 C: 1/3 D: 2/3
设\(z = u{e^v}\),\(u = x + y\),\(v = xy\),则\( { { \partial z} \over {\partial x}}=\) A: \({e^{xy}}(1 + xy + {y^2})\) B: \({e^{xy}}(1 + xy + {y^3})\) C: \({e^{xy}}(x+ xy + {y^2})\) D: \({e^{xy}}(y+ xy + {y^2})\)
设\(z = u{e^v}\),\(u = x + y\),\(v = xy\),则\( { { \partial z} \over {\partial x}}=\) A: \({e^{xy}}(1 + xy + {y^2})\) B: \({e^{xy}}(1 + xy + {y^3})\) C: \({e^{xy}}(x+ xy + {y^2})\) D: \({e^{xy}}(y+ xy + {y^2})\)
是z=xy,x+y=1,z=0所围成的图形,=1/180。
是z=xy,x+y=1,z=0所围成的图形,=1/180。
微分方程xy′+2y=xlnx满足y(1)=-1/9的解为____。
微分方程xy′+2y=xlnx满足y(1)=-1/9的解为____。
是z=xy,x+y=1,z=0所围成的图形,=1/180
是z=xy,x+y=1,z=0所围成的图形,=1/180
函数\( z = {x^2} + {y^2} - xy + x + y \)的驻点为( )。 A: \( ( - 1, - 1) \) B: \( ( - 1, 0) \) C: \( ( 0, - 1) \) D: \( ( 1, 1) \)
函数\( z = {x^2} + {y^2} - xy + x + y \)的驻点为( )。 A: \( ( - 1, - 1) \) B: \( ( - 1, 0) \) C: \( ( 0, - 1) \) D: \( ( 1, 1) \)
E(X)=1/2 , E(Y)=1/4 E(XY)= 1/4,则Cov(X,Y)= ____(a/b)
E(X)=1/2 , E(Y)=1/4 E(XY)= 1/4,则Cov(X,Y)= ____(a/b)