cos(x)*cos(x/2)*cos(x/4)*cos(x/8).cos(x/(2^(n-1))
cos(x)*cos(x/2)*cos(x/4)*cos(x/8).cos(x/(2^(n-1))
【单选题】设y=sin(cos(x)),求 结果为:(本题10.0分) A. cos(cos(x))*cos(x)+ sin(cos(x))*sin(x)^2 B. - cos(cos(x))*cos(x) - sin(cos(x))*sin(x)^2 C. - cos(cos(x))*cos(x)^2 - sin(cos(x))*sin(x)^2 D. - cos(cos(x))*cos(x) ^2- sin(cos(x))*sin(x)
【单选题】设y=sin(cos(x)),求 结果为:(本题10.0分) A. cos(cos(x))*cos(x)+ sin(cos(x))*sin(x)^2 B. - cos(cos(x))*cos(x) - sin(cos(x))*sin(x)^2 C. - cos(cos(x))*cos(x)^2 - sin(cos(x))*sin(x)^2 D. - cos(cos(x))*cos(x) ^2- sin(cos(x))*sin(x)
数学式 A: (e^(2*x)*Log(x)+x^2)/Sqr(Abs(Sinx^2-Cos2x)) B: (Exp(2*x)*Log(x)+x^2)/Sqr(Abs(Sin(x^2)-Cos(x)^2)) C: (Exp(2*x)*Ln(x)+x^2)/Sqr(Abs(Sin(x^2)-Cos(x)^2)) D: (e^(2*x)*Log(x)+x^2)/Sqr(Abs(Sin(x)^2-Cos(x)^2))
数学式 A: (e^(2*x)*Log(x)+x^2)/Sqr(Abs(Sinx^2-Cos2x)) B: (Exp(2*x)*Log(x)+x^2)/Sqr(Abs(Sin(x^2)-Cos(x)^2)) C: (Exp(2*x)*Ln(x)+x^2)/Sqr(Abs(Sin(x^2)-Cos(x)^2)) D: (e^(2*x)*Log(x)+x^2)/Sqr(Abs(Sin(x)^2-Cos(x)^2))
函数 $y=sinx -x$的微分为 A: $cos x -1 $ B: $(cos x -1)dx$ C: $(sin x -1)dx$ D: $sin x -1$
函数 $y=sinx -x$的微分为 A: $cos x -1 $ B: $(cos x -1)dx$ C: $(sin x -1)dx$ D: $sin x -1$
【单选题】化简 sin( x + y )sin( x - y ) + cos( x + y )cos( x - y ) 的结果是 A. sin 2 x B. cos 2 y C. - cos 2 x D. -cos 2 y
【单选题】化简 sin( x + y )sin( x - y ) + cos( x + y )cos( x - y ) 的结果是 A. sin 2 x B. cos 2 y C. - cos 2 x D. -cos 2 y
$\int {{1 \over {3 + 5\cos x}}} dx = \left( {} \right)$ A: ${1 \over 4}\ln \left| {{{2\cos x + \sin x} \over {2\cos x - \sin x}}} \right| + C$ B: ${1 \over 4}\ln \left| {{{2\cos {x \over 2} + \sin {x \over 2}} \over {2\cos {x \over 2} - \sin {x \over 2}}}} \right| + C$ C: $\ln \left| {{{\cos {x \over 2} + \sin {x \over 2}} \over {\cos {x \over 2} - \sin {x \over 2}}}} \right| + C$ D: $\ln \left| {{{\cos x + \sin x} \over {\cos x - \sin x}}} \right| + C$
$\int {{1 \over {3 + 5\cos x}}} dx = \left( {} \right)$ A: ${1 \over 4}\ln \left| {{{2\cos x + \sin x} \over {2\cos x - \sin x}}} \right| + C$ B: ${1 \over 4}\ln \left| {{{2\cos {x \over 2} + \sin {x \over 2}} \over {2\cos {x \over 2} - \sin {x \over 2}}}} \right| + C$ C: $\ln \left| {{{\cos {x \over 2} + \sin {x \over 2}} \over {\cos {x \over 2} - \sin {x \over 2}}}} \right| + C$ D: $\ln \left| {{{\cos x + \sin x} \over {\cos x - \sin x}}} \right| + C$
曲线积分$$\int_{(0,0}^{(x,y)}(2x\cos y-y^2\sin x)dx+(2y\cos x-x^2\sin y)dy=$$ A: $y^2\cos x+x^2\cos y$ B: $x^2\cos x+y^2\cos y$ C: $x^2\sin y+y^2\sin x$ D: $x^2\sin x+y^2\sin y$
曲线积分$$\int_{(0,0}^{(x,y)}(2x\cos y-y^2\sin x)dx+(2y\cos x-x^2\sin y)dy=$$ A: $y^2\cos x+x^2\cos y$ B: $x^2\cos x+y^2\cos y$ C: $x^2\sin y+y^2\sin x$ D: $x^2\sin x+y^2\sin y$
欧拉公式正确的是 A: cos(x)=(ex+e-x)/2,sin(x)=(ex-e-x)/2 B: cos(x)=(ejx+e-jx)/2,sin(x)=(ejx-e-jx)/(2j) C: cos(x)=(ejx+e-jx)/(2j),sin(x)=(ejx-e-jx)/2 D: cos(x)=(ejx+e-jx)/2,sin(x)=(ejx-e-jx)/2
欧拉公式正确的是 A: cos(x)=(ex+e-x)/2,sin(x)=(ex-e-x)/2 B: cos(x)=(ejx+e-jx)/2,sin(x)=(ejx-e-jx)/(2j) C: cos(x)=(ejx+e-jx)/(2j),sin(x)=(ejx-e-jx)/2 D: cos(x)=(ejx+e-jx)/2,sin(x)=(ejx-e-jx)/2
把下列复合函数分解成基本初等函数1.y=2(sinx)方2.y=cos²(2x+1)3.y=根号下ln(x²+1)
把下列复合函数分解成基本初等函数1.y=2(sinx)方2.y=cos²(2x+1)3.y=根号下ln(x²+1)
\( \int {\cos \ln xdx} = \)( ) A: \( {x \over 2}(\cos \ln x + \sin \ln x) + C \) B: \( {x \over 2}(\cos \ln x - \sin \ln x) + C \) C: \(- {x \over 2}(\cos \ln x + \sin \ln x) + C \) D: \(- {x \over 2}(\cos \ln x - \sin \ln x) + C \)
\( \int {\cos \ln xdx} = \)( ) A: \( {x \over 2}(\cos \ln x + \sin \ln x) + C \) B: \( {x \over 2}(\cos \ln x - \sin \ln x) + C \) C: \(- {x \over 2}(\cos \ln x + \sin \ln x) + C \) D: \(- {x \over 2}(\cos \ln x - \sin \ln x) + C \)