1)z^2=z拔(2)z^2+|z|=0
1)z^2=z拔(2)z^2+|z|=0
信号$x[n]=(n-3)u(n)$的Z变换结果是 A: $\frac{1}{z^2(z-1)^2}$ B: $\frac{1}{z^2(z-1)}$ C: $\frac{1}{z(z-1)^2}$ D: $\frac{1}{z^2(z+1)^2}$
信号$x[n]=(n-3)u(n)$的Z变换结果是 A: $\frac{1}{z^2(z-1)^2}$ B: $\frac{1}{z^2(z-1)}$ C: $\frac{1}{z(z-1)^2}$ D: $\frac{1}{z^2(z+1)^2}$
以下程序输出结果是_______int x=2,y=-1,z=2; if(x<y) if(y<0) z=0; else z+=1; System.out.println(z); A: 3 B: 2 C: 1 D: 0
以下程序输出结果是_______int x=2,y=-1,z=2; if(x<y) if(y<0) z=0; else z+=1; System.out.println(z); A: 3 B: 2 C: 1 D: 0
z=0为f(z)=z^2 (e^(z^2 )-1)的 级零点,
z=0为f(z)=z^2 (e^(z^2 )-1)的 级零点,
设向量场u(x,y,z)=xy2i+yezj+xln(1+z2)k,则u在P(1,1,0)处的散度divu= A: 1 B: 2 C: -2 D: 0
设向量场u(x,y,z)=xy2i+yezj+xln(1+z2)k,则u在P(1,1,0)处的散度divu= A: 1 B: 2 C: -2 D: 0
设ω1、ω2,为任意两个可能的财富值,0<a<1,凹性效用函数具有的性质为( )。 A: u[aω1+(1-a)ω2]<au(ω1)+(1-a)u(ω2) B: u[aω1+(1-a)ω2]>au(ω1)+(1-a)u(ω2) C: u[aω1+(1-a)ω2]≤au(ω1)+(1-a)u(ω2) D: u[aω1+(1-a)ω2]≥au(ω1)+(1-a)u(ω2)
设ω1、ω2,为任意两个可能的财富值,0<a<1,凹性效用函数具有的性质为( )。 A: u[aω1+(1-a)ω2]<au(ω1)+(1-a)u(ω2) B: u[aω1+(1-a)ω2]>au(ω1)+(1-a)u(ω2) C: u[aω1+(1-a)ω2]≤au(ω1)+(1-a)u(ω2) D: u[aω1+(1-a)ω2]≥au(ω1)+(1-a)u(ω2)
设\(f\left( {x,y,z} \right) = x{y^2} + y{z^2} + z{x^2}\),则\({f_{yz}}\left( {0,-1,0} \right) = \)( ) A: 1 B: 0 C: -1 D: 2
设\(f\left( {x,y,z} \right) = x{y^2} + y{z^2} + z{x^2}\),则\({f_{yz}}\left( {0,-1,0} \right) = \)( ) A: 1 B: 0 C: -1 D: 2
当$|z|<0.5$时左边序列$x[n]$为 A: $[(\frac{1}{2})^n-2^n]u[-n-1]$ B: $[(\frac{1}{2})^n+2^n]u[-n-1]$ C: $[2^n-(\frac{1}{2})^n]u[-n-1]$ D: $[2^n+(-\frac{1}{2})^n]u[-n-1]$
当$|z|<0.5$时左边序列$x[n]$为 A: $[(\frac{1}{2})^n-2^n]u[-n-1]$ B: $[(\frac{1}{2})^n+2^n]u[-n-1]$ C: $[2^n-(\frac{1}{2})^n]u[-n-1]$ D: $[2^n+(-\frac{1}{2})^n]u[-n-1]$
以下程序的输出结果是( )。 main() { int x = 2, y = -1, z = 2; if (x < y) if (y < 0) z = 0; else z + = 1; printf("%d \n",z); }
以下程序的输出结果是( )。 main() { int x = 2, y = -1, z = 2; if (x < y) if (y < 0) z = 0; else z + = 1; printf("%d \n",z); }
曲线\( \left\{ {\matrix{ { { x^2} + {y^2} = {z^2}} \cr { { z^2} = y} \cr } } \right. \)在坐标面\( yoz \) 上的投影曲线方程为( ) A: \( \left\{ {\matrix{ { { x^2} + { { \left( {y - {1 \over 2}} \right)}^2} = {1 \over 4}} \cr {z = 0} \cr } } \right. \) B: \( \left\{ {\matrix{ { { z^2} = y} \cr {x = 0} \cr } } \right. \) C: \( \left\{ {\matrix{ {z = {y^2}} \cr {x = 0} \cr } } \right. \) D: \( \left\{ {\matrix{ { { y^2} + { { \left( {x - {1 \over 2}} \right)}^2} = {1 \over 4}} \cr {z = 0} \cr } } \right. \)
曲线\( \left\{ {\matrix{ { { x^2} + {y^2} = {z^2}} \cr { { z^2} = y} \cr } } \right. \)在坐标面\( yoz \) 上的投影曲线方程为( ) A: \( \left\{ {\matrix{ { { x^2} + { { \left( {y - {1 \over 2}} \right)}^2} = {1 \over 4}} \cr {z = 0} \cr } } \right. \) B: \( \left\{ {\matrix{ { { z^2} = y} \cr {x = 0} \cr } } \right. \) C: \( \left\{ {\matrix{ {z = {y^2}} \cr {x = 0} \cr } } \right. \) D: \( \left\{ {\matrix{ { { y^2} + { { \left( {x - {1 \over 2}} \right)}^2} = {1 \over 4}} \cr {z = 0} \cr } } \right. \)