已知1+tanα1-tanα=3,计算:(1)2sinα-3cosα4sinα-9cosα; (2)2sinαcosα+6cos2α-35-10sin2α-6sinαcosα.
已知1+tanα1-tanα=3,计算:(1)2sinα-3cosα4sinα-9cosα; (2)2sinαcosα+6cos2α-35-10sin2α-6sinαcosα.
Solve $ \int_0^{\pi}\cos^9{x}dx=$ :<br/>______
Solve $ \int_0^{\pi}\cos^9{x}dx=$ :<br/>______
如图为两相互垂直、频率相同的简谐振动合成的图形。已知x方向的振动方程为x=6cos2pt,则在y方向的振动方程应为[img=370x376]1802d1003ec75c4.png[/img] A: y=9cos(2pt-p/2) B: y=9cos(2pt+p/2) C: y=9cos2pt D: y=9cos(2pt+p)
如图为两相互垂直、频率相同的简谐振动合成的图形。已知x方向的振动方程为x=6cos2pt,则在y方向的振动方程应为[img=370x376]1802d1003ec75c4.png[/img] A: y=9cos(2pt-p/2) B: y=9cos(2pt+p/2) C: y=9cos2pt D: y=9cos(2pt+p)
(4)$A$矢量的方向余弦(与三个坐标轴的夹角余弦)的大小是: A: $cos\alpha=3/\sqrt{14},cos\beta=-1/\sqrt{14},cos\gamma=3/\sqrt{14}$ B: $cos\alpha=4/\sqrt{14},cos\beta=-1/\sqrt{14},cos\gamma=3/\sqrt{14}$ C: $cos\alpha=2/\sqrt{14},cos\beta=-1/\sqrt{14},cos\gamma=3/\sqrt{14}$ D: $cos\alpha=3/\sqrt{14},cos\beta=9/\sqrt{14},cos\gamma=3/\sqrt{14}$
(4)$A$矢量的方向余弦(与三个坐标轴的夹角余弦)的大小是: A: $cos\alpha=3/\sqrt{14},cos\beta=-1/\sqrt{14},cos\gamma=3/\sqrt{14}$ B: $cos\alpha=4/\sqrt{14},cos\beta=-1/\sqrt{14},cos\gamma=3/\sqrt{14}$ C: $cos\alpha=2/\sqrt{14},cos\beta=-1/\sqrt{14},cos\gamma=3/\sqrt{14}$ D: $cos\alpha=3/\sqrt{14},cos\beta=9/\sqrt{14},cos\gamma=3/\sqrt{14}$
化简[sin(2丌-a)-cos(11丌/2-a)]/[sin(-丌-a)sin(9丌/2+a)]
化简[sin(2丌-a)-cos(11丌/2-a)]/[sin(-丌-a)sin(9丌/2+a)]
【单选题】sin ( α+β ) = A. sinαcosβ-cosαsinβ B. cosαsin β-sin αcos β C. sinαcosβ+cosαsinβ D. cos αcos β-sin α sin β
【单选题】sin ( α+β ) = A. sinαcosβ-cosαsinβ B. cosαsin β-sin αcos β C. sinαcosβ+cosαsinβ D. cos αcos β-sin α sin β
【单选题】设y=sin(cos(x)),求 结果为:(本题10.0分) A. cos(cos(x))*cos(x)+ sin(cos(x))*sin(x)^2 B. - cos(cos(x))*cos(x) - sin(cos(x))*sin(x)^2 C. - cos(cos(x))*cos(x)^2 - sin(cos(x))*sin(x)^2 D. - cos(cos(x))*cos(x) ^2- sin(cos(x))*sin(x)
【单选题】设y=sin(cos(x)),求 结果为:(本题10.0分) A. cos(cos(x))*cos(x)+ sin(cos(x))*sin(x)^2 B. - cos(cos(x))*cos(x) - sin(cos(x))*sin(x)^2 C. - cos(cos(x))*cos(x)^2 - sin(cos(x))*sin(x)^2 D. - cos(cos(x))*cos(x) ^2- sin(cos(x))*sin(x)
cos(x)*cos(x/2)*cos(x/4)*cos(x/8).cos(x/(2^(n-1))
cos(x)*cos(x/2)*cos(x/4)*cos(x/8).cos(x/(2^(n-1))
\(设f(x,y,z)=\frac{x\cos y+y\cos z+z\cos x}{1+\cos x+\cos y+\cos z},则df|_{(0,0,0)}=(\,)\)
\(设f(x,y,z)=\frac{x\cos y+y\cos z+z\cos x}{1+\cos x+\cos y+\cos z},则df|_{(0,0,0)}=(\,)\)
sin(α-β)cosβ+cos(α-β)sinβ=( ) A: sin(α-2β) B: cos(α-2β) C: sinα D: cosα
sin(α-β)cosβ+cos(α-β)sinβ=( ) A: sin(α-2β) B: cos(α-2β) C: sinα D: cosα