下图所示机构自由度计算,( )是正确的。 A: mg src="http://p.ananas.chaoxing.com/star3/origin/cb07ca0fb12be985c301490389c1e187.jpg" B: F=3×7 –(2×9 + 2 – 2)– 2 = 1 C: F=3×7 –(2×9+ 2– 0)– 0 = 1 D: F=3×7 –(2×8+ 2 – 0)– 2 = 1 E: F=3×5 –(2×6+ 2– 0)– 0 = 1
下图所示机构自由度计算,( )是正确的。 A: mg src="http://p.ananas.chaoxing.com/star3/origin/cb07ca0fb12be985c301490389c1e187.jpg" B: F=3×7 –(2×9 + 2 – 2)– 2 = 1 C: F=3×7 –(2×9+ 2– 0)– 0 = 1 D: F=3×7 –(2×8+ 2 – 0)– 2 = 1 E: F=3×5 –(2×6+ 2– 0)– 0 = 1
表达式7%(-3)的运算结果为 A: 0 B: 1 C: 2 D: -1 E: -2 F: 内存溢出
表达式7%(-3)的运算结果为 A: 0 B: 1 C: 2 D: -1 E: -2 F: 内存溢出
直线l经过P(2,=5),且点A(3,-2)和点B(-1,6)到l得距离之比为1:2,则直线l方程是( ). A: χ+y+3=0或17χ+y-29=0 B: 2χ-y-9—0或17χ+y-29=0 C: χ+y+3=0 D: 17χ+y-29=0 E: 以上结论均不正确
直线l经过P(2,=5),且点A(3,-2)和点B(-1,6)到l得距离之比为1:2,则直线l方程是( ). A: χ+y+3=0或17χ+y-29=0 B: 2χ-y-9—0或17χ+y-29=0 C: χ+y+3=0 D: 17χ+y-29=0 E: 以上结论均不正确
f(x)在[0,1]上有连续的二阶导数,f(0)=f(1)=0,任意x属于[0,...715af2ac3f81f8.png"]
f(x)在[0,1]上有连续的二阶导数,f(0)=f(1)=0,任意x属于[0,...715af2ac3f81f8.png"]
逻辑函数的最小项表达式为() A: F=Σm(0、2、5、7) B: C: F=Σm(1、3、6) D: F=Σm(0、1、2、6、7)
逻辑函数的最小项表达式为() A: F=Σm(0、2、5、7) B: C: F=Σm(1、3、6) D: F=Σm(0、1、2、6、7)
设f(x)在点x=x0处可导,且f(xo+7△x)-f(xo)△x→1(△x→0),则f′(xo)=( ) A: 1 B: 0 C: 7 D: 17
设f(x)在点x=x0处可导,且f(xo+7△x)-f(xo)△x→1(△x→0),则f′(xo)=( ) A: 1 B: 0 C: 7 D: 17
设f''(x)在[0,2]连续,且f(0)=1,f(2)=3,f(2)=5,则。xf''(2x)dx=()。 A: 3 B: 2 C: 7 D: 6
设f''(x)在[0,2]连续,且f(0)=1,f(2)=3,f(2)=5,则。xf''(2x)dx=()。 A: 3 B: 2 C: 7 D: 6
设函数f(x)在区间[-2,2]上可导,且f′(x)>f(x)>0,则()。 A: f(-2)/f(-1)>1 B: f(0)/f(-1)>e C: f(1)/f(-1)<e<sup>2</sup> D: f(2)/f(-1)<e<sup>2</sup>
设函数f(x)在区间[-2,2]上可导,且f′(x)>f(x)>0,则()。 A: f(-2)/f(-1)>1 B: f(0)/f(-1)>e C: f(1)/f(-1)<e<sup>2</sup> D: f(2)/f(-1)<e<sup>2</sup>
设f(x)为连续函数,则等于() A: f(2)-f(0) B: 1/2[f(11)-f(0)] C: 1/2[f(2)-f(0)] D: f(1)-f(0)
设f(x)为连续函数,则等于() A: f(2)-f(0) B: 1/2[f(11)-f(0)] C: 1/2[f(2)-f(0)] D: f(1)-f(0)
下列哪个选项是函数 f:N→Z,f(n)=n² 的递归定义? A: f(n)=nf(n-1)+1,f(0)=0 B: f(n)=f(n-1)+(2n-1),f(0)=0 C: f(n)=f(n-1)²,f(0)=0 D: f(n)=f(n-1)+(2n+1),f(0)=0 E: f(n)=2f(n-1)+2
下列哪个选项是函数 f:N→Z,f(n)=n² 的递归定义? A: f(n)=nf(n-1)+1,f(0)=0 B: f(n)=f(n-1)+(2n-1),f(0)=0 C: f(n)=f(n-1)²,f(0)=0 D: f(n)=f(n-1)+(2n+1),f(0)=0 E: f(n)=2f(n-1)+2