已知x>0,则x-x2/2
已知x>0,则x-x2/2
已知x>0,则x-x2/2 √
已知x>0,则x-x2/2 √
若f(x)=f(x)=1x(x<0)x-x2(x≥0),则f(f(2))=______.
若f(x)=f(x)=1x(x<0)x-x2(x≥0),则f(f(2))=______.
函数f(x)=lg(x-x2)的定义域为___.
函数f(x)=lg(x-x2)的定义域为___.
牛顿插值多项式的余项是() A: f(x,x0,x1,x2,…,xn)(x-x1)(x-x2)…(x-xn-1)(x-xn) B: C: f(x,x0,x1,x2,…,xn)(x-x0)(x-x1)(x-x2)…(x-xn-1)(x-xn) D:
牛顿插值多项式的余项是() A: f(x,x0,x1,x2,…,xn)(x-x1)(x-x2)…(x-xn-1)(x-xn) B: C: f(x,x0,x1,x2,…,xn)(x-x0)(x-x1)(x-x2)…(x-xn-1)(x-xn) D:
数学式 A: (e^(2*x)*Log(x)+x^2)/Sqr(Abs(Sinx^2-Cos2x)) B: (Exp(2*x)*Log(x)+x^2)/Sqr(Abs(Sin(x^2)-Cos(x)^2)) C: (Exp(2*x)*Ln(x)+x^2)/Sqr(Abs(Sin(x^2)-Cos(x)^2)) D: (e^(2*x)*Log(x)+x^2)/Sqr(Abs(Sin(x)^2-Cos(x)^2))
数学式 A: (e^(2*x)*Log(x)+x^2)/Sqr(Abs(Sinx^2-Cos2x)) B: (Exp(2*x)*Log(x)+x^2)/Sqr(Abs(Sin(x^2)-Cos(x)^2)) C: (Exp(2*x)*Ln(x)+x^2)/Sqr(Abs(Sin(x^2)-Cos(x)^2)) D: (e^(2*x)*Log(x)+x^2)/Sqr(Abs(Sin(x)^2-Cos(x)^2))
求微分方程[img=101x35]17da5f15503f795.png[/img] 的通解,实验命令为(). A: dsolve(Dy+2*x*y=x*exp(-x^2))ans=C1*exp(-x^2) + (x^2*exp(-x^2))/2 B: dsolve('Dy+2*x*y=x*exp(-x^2)','x')ans=C1*exp(-x^2) + (x^2*exp(-x^2))/2 C: dsolve('Dy+2*x*y=x*exp(-x^2)')ans=C1*exp(-x^2) + (x^2*exp(-x^2))/2
求微分方程[img=101x35]17da5f15503f795.png[/img] 的通解,实验命令为(). A: dsolve(Dy+2*x*y=x*exp(-x^2))ans=C1*exp(-x^2) + (x^2*exp(-x^2))/2 B: dsolve('Dy+2*x*y=x*exp(-x^2)','x')ans=C1*exp(-x^2) + (x^2*exp(-x^2))/2 C: dsolve('Dy+2*x*y=x*exp(-x^2)')ans=C1*exp(-x^2) + (x^2*exp(-x^2))/2
在x值处于-2~2、4~8时值为“真”,否则为“假”的表达式是______。 A: (2>x>-2)||(4>x>8) B: !(((x<-2)||(x>2))&&((x<=4)||(x>8))) C: (x<2)&&(x>=-2)&&(x>4)&&(x<8) D: (x>-2)&&(x>4)||(x<8)&&(x<2)
在x值处于-2~2、4~8时值为“真”,否则为“假”的表达式是______。 A: (2>x>-2)||(4>x>8) B: !(((x<-2)||(x>2))&&((x<=4)||(x>8))) C: (x<2)&&(x>=-2)&&(x>4)&&(x<8) D: (x>-2)&&(x>4)||(x<8)&&(x<2)
设\(z = \int_ { { x^2}}^y { { e^t}\sin t} dt\),则\({z_{xx}=}\) A: \(2{e^ { { x^2}}}\left[ {\left( {1 + 2{x^2}} \right)\sin {x^2} + 2{x^2}\cos {x^2}} \right]\) B: \( - 2{e^ { { x^2}}}\left[ {\left( {1 + 2{x^2}} \right)\sin {x^2} - 2{x^2}\cos {x^2}} \right]\) C: \( - 2{e^ { { x^2}}}\left[ {\left( {1 + 2{x^2}} \right)\sin {x^2} + 2{x^2}\cos {x^2}} \right]\) D: \( - 2{e^ { { x^2}}}\left[ {\left( {1 + 2{x^2}} \right)\cos {x^2} + 2{x^2}\sin {x^2}} \right]\)
设\(z = \int_ { { x^2}}^y { { e^t}\sin t} dt\),则\({z_{xx}=}\) A: \(2{e^ { { x^2}}}\left[ {\left( {1 + 2{x^2}} \right)\sin {x^2} + 2{x^2}\cos {x^2}} \right]\) B: \( - 2{e^ { { x^2}}}\left[ {\left( {1 + 2{x^2}} \right)\sin {x^2} - 2{x^2}\cos {x^2}} \right]\) C: \( - 2{e^ { { x^2}}}\left[ {\left( {1 + 2{x^2}} \right)\sin {x^2} + 2{x^2}\cos {x^2}} \right]\) D: \( - 2{e^ { { x^2}}}\left[ {\left( {1 + 2{x^2}} \right)\cos {x^2} + 2{x^2}\sin {x^2}} \right]\)
拉格朗日插值多项式的余项是() 未知类型:{'options': ['f(x,x0,x1,x2,…,xn)(x-x1)(x-x2)…(x-xn-1)(x-xn)', '[img=203x47]17e38bdecc3ae48.jpg[/img]', 'f(x,x0,x1,x2,…,xn)(x-x0)(x-x1)(x-x2)…(x-xn-1)(x-xn)', '[img=216x37]17e38be4547be2e.jpg[/img]'], 'type': 102}
拉格朗日插值多项式的余项是() 未知类型:{'options': ['f(x,x0,x1,x2,…,xn)(x-x1)(x-x2)…(x-xn-1)(x-xn)', '[img=203x47]17e38bdecc3ae48.jpg[/img]', 'f(x,x0,x1,x2,…,xn)(x-x0)(x-x1)(x-x2)…(x-xn-1)(x-xn)', '[img=216x37]17e38be4547be2e.jpg[/img]'], 'type': 102}