若f(z)在圆|z|<R内解析,f(0)=0,|f(z)|≤M<+∞,则(1)|f(z)|≤;(2)若在圆内有一点z(0<|z|<R)使
若f(z)在圆|z|<R内解析,f(0)=0,|f(z)|≤M<+∞,则(1)|f(z)|≤;(2)若在圆内有一点z(0<|z|<R)使
9. 已知函数$z=z(x,y)$由${{z}^{3}}-3xyz={{a}^{3}}$确定,则$\frac{{{\partial }^{2}}z}{\partial x\partial y}=$( ) A: $\frac{z({{z}^{4}}-2xy{{z}^{2}}-{{x}^{2}}{{y}^{2}})}{{{({{z}^{2}}-xy)}^{3}}}$ B: $\frac{z({{z}^{4}}-2xy{{z}^{2}}-xy)}{{{({{z}^{2}}-xy)}^{2}}}$ C: $\frac{z({{z}^{3}}-2xyz-{{x}^{2}}{{y}^{2}})}{{{({{z}^{2}}-xy)}^{3}}}$ D: $\frac{z({{z}^{3}}-2xy{{z}^{2}}-{{x}^{2}}y)}{{{({{z}^{2}}-xy)}^{3}}}$
9. 已知函数$z=z(x,y)$由${{z}^{3}}-3xyz={{a}^{3}}$确定,则$\frac{{{\partial }^{2}}z}{\partial x\partial y}=$( ) A: $\frac{z({{z}^{4}}-2xy{{z}^{2}}-{{x}^{2}}{{y}^{2}})}{{{({{z}^{2}}-xy)}^{3}}}$ B: $\frac{z({{z}^{4}}-2xy{{z}^{2}}-xy)}{{{({{z}^{2}}-xy)}^{2}}}$ C: $\frac{z({{z}^{3}}-2xyz-{{x}^{2}}{{y}^{2}})}{{{({{z}^{2}}-xy)}^{3}}}$ D: $\frac{z({{z}^{3}}-2xy{{z}^{2}}-{{x}^{2}}y)}{{{({{z}^{2}}-xy)}^{3}}}$
()为声压反射率的公式。 A: r<sub>p</sub>=(Z<sub>2</sub>-Z<sub>1</sub>)/Z<sub>1</sub>+Z<sub>2</sub> B: t<sub>p</sub>=1+r<sub>p</sub> C: R=r<sub>p</sub><sup>2</sup> D: D=1-r<sub>p</sub><sup>2</sup>
()为声压反射率的公式。 A: r<sub>p</sub>=(Z<sub>2</sub>-Z<sub>1</sub>)/Z<sub>1</sub>+Z<sub>2</sub> B: t<sub>p</sub>=1+r<sub>p</sub> C: R=r<sub>p</sub><sup>2</sup> D: D=1-r<sub>p</sub><sup>2</sup>
利用谓词的约束变元的换名规则和自由变元的代入规则,可将公式改写成______. A: (x)(P(y)→Q(x,y))∧R(z,s) B: (z)(P(z)→Q(z,s))∧R(x,s) C: (x)(P(s)→Q(x,s))∧R(x,s) D: (z)(P(s)→Q(z,s))∧R(z,s)
利用谓词的约束变元的换名规则和自由变元的代入规则,可将公式改写成______. A: (x)(P(y)→Q(x,y))∧R(z,s) B: (z)(P(z)→Q(z,s))∧R(x,s) C: (x)(P(s)→Q(x,s))∧R(x,s) D: (z)(P(s)→Q(z,s))∧R(z,s)
以点\( (2, - 1,2) \)求球心,3为半径的球面方程为( ) A: \( {(x + 2)^2} + {(y - 1)^2} + {(z + 2)^2} = 9 \) B: \( {(x + 2)^2} + {(y - 1)^2} + {(z + 2)^2} = 3 \) C: \( {(x - 2)^2} + {(y + 1)^2} + {(z - 2)^2} = 9 \) D: \( {(x - 2)^2} + {(y + 1)^2} + {(z - 2)^2} = 3 \)
以点\( (2, - 1,2) \)求球心,3为半径的球面方程为( ) A: \( {(x + 2)^2} + {(y - 1)^2} + {(z + 2)^2} = 9 \) B: \( {(x + 2)^2} + {(y - 1)^2} + {(z + 2)^2} = 3 \) C: \( {(x - 2)^2} + {(y + 1)^2} + {(z - 2)^2} = 9 \) D: \( {(x - 2)^2} + {(y + 1)^2} + {(z - 2)^2} = 3 \)
设方程\(z^2+y^2+z^2 = 4z\)确定函数\(z=z(x,y)\),则\( { { {\partial ^2}z} \over {\partial {x^2}}} =\) A: \( { { { { (2 - z)}^2} + {x^2}} \over { { {(2+ z)}^3}}}\) B: \( { { { { (2 - z)}^2} + {x^2}} \over { { {(2 - z)}^3}}}\) C: \( { { { { (2 - z)}^2} -{x^2}} \over { { {(2 - z)}^3}}}\) D: \( { { { { (2 + z)}^2} + {x^2}} \over { { {(2 - z)}^3}}}\)
设方程\(z^2+y^2+z^2 = 4z\)确定函数\(z=z(x,y)\),则\( { { {\partial ^2}z} \over {\partial {x^2}}} =\) A: \( { { { { (2 - z)}^2} + {x^2}} \over { { {(2+ z)}^3}}}\) B: \( { { { { (2 - z)}^2} + {x^2}} \over { { {(2 - z)}^3}}}\) C: \( { { { { (2 - z)}^2} -{x^2}} \over { { {(2 - z)}^3}}}\) D: \( { { { { (2 + z)}^2} + {x^2}} \over { { {(2 - z)}^3}}}\)
1)z^2=z拔(2)z^2+|z|=0
1)z^2=z拔(2)z^2+|z|=0
计量资料的完全随机设计实验,在组与组之间样本含量相等(n1=n2)条件下,每组样本含量(n)的计算公式为() A: n=2[(s/d)(zα+zβ)]2 B: n=3[(s/d)(zα+zβ)]2 C: n=4[(s/d)(zα+zβ)]2 D: n=5[(s/d)(zα+zβ)]2
计量资料的完全随机设计实验,在组与组之间样本含量相等(n1=n2)条件下,每组样本含量(n)的计算公式为() A: n=2[(s/d)(zα+zβ)]2 B: n=3[(s/d)(zα+zβ)]2 C: n=4[(s/d)(zα+zβ)]2 D: n=5[(s/d)(zα+zβ)]2
在Re(p)<0中,Z(s)的非平凡零点个数是() A: 0 B: 1 C: 2 D: 3
在Re(p)<0中,Z(s)的非平凡零点个数是() A: 0 B: 1 C: 2 D: 3
用符号“∈”或“∉”填空 (1)0 N; (2) 0.6 Z; (3)π R; (4)1/3 Q; (5)0 ∅
用符号“∈”或“∉”填空 (1)0 N; (2) 0.6 Z; (3)π R; (4)1/3 Q; (5)0 ∅