设int x=1;a=9,b=6,c=9,d=8;执行语句: if(a>b )if(c>b )if(b>d )x=2;else x=6; 后x的值是( ) A: 1 B: 2 C: 6 D: 不确定
设int x=1;a=9,b=6,c=9,d=8;执行语句: if(a>b )if(c>b )if(b>d )x=2;else x=6; 后x的值是( ) A: 1 B: 2 C: 6 D: 不确定
下列代码运行结果是?a = map(lambda x: x**3, [1, 2, 3])list(a) A: [1, 12, 27] B: (1, 6, 9) C: [1, 8, 27] D: [1, 6, 9]
下列代码运行结果是?a = map(lambda x: x**3, [1, 2, 3])list(a) A: [1, 12, 27] B: (1, 6, 9) C: [1, 8, 27] D: [1, 6, 9]
设二维随机变量(X,Y)的联合分布列为 XY -1 0 1 -1 1 1/6 1/9 2/9 1/3 0 1/6则P{XY=1}为( ) A: 0 B: 1/6 C: 1/3 D: 2/3
设二维随机变量(X,Y)的联合分布列为 XY -1 0 1 -1 1 1/6 1/9 2/9 1/3 0 1/6则P{XY=1}为( ) A: 0 B: 1/6 C: 1/3 D: 2/3
已知 x = [6, 9, 8],那么执行语句 x.insert(0, 1)之后,x的值为( )。 A: [1, 6, 9, 8] B: [6, 9, 8, 1] C: [6, 9, 1, 8] D: [6, 1, 9, 8]
已知 x = [6, 9, 8],那么执行语句 x.insert(0, 1)之后,x的值为( )。 A: [1, 6, 9, 8] B: [6, 9, 8, 1] C: [6, 9, 1, 8] D: [6, 1, 9, 8]
求函数$y = {{1 + \root 3 \of {{x^2}} - \sqrt {2x} } \over {\sqrt x }}$的导数$y' = $( ) A: $ {1 \over 2}{x^{ - {3 \over 2}}} + {1 \over 6}{x^{ - {5 \over 6}}}$ B: $ - {1 \over 2}{x^{ - {3 \over 2}}} + {1 \over 6}{x^{ - {5 \over 6}}}$ C: ${1 \over 2}{x^{ - {3 \over 2}}} - {1 \over 6}{x^{ - {5 \over 6}}}$ D: ${1 \over 3}{x^{ - {3 \over 2}}} - {1 \over 6}{x^{ - {5 \over 6}}}$
求函数$y = {{1 + \root 3 \of {{x^2}} - \sqrt {2x} } \over {\sqrt x }}$的导数$y' = $( ) A: $ {1 \over 2}{x^{ - {3 \over 2}}} + {1 \over 6}{x^{ - {5 \over 6}}}$ B: $ - {1 \over 2}{x^{ - {3 \over 2}}} + {1 \over 6}{x^{ - {5 \over 6}}}$ C: ${1 \over 2}{x^{ - {3 \over 2}}} - {1 \over 6}{x^{ - {5 \over 6}}}$ D: ${1 \over 3}{x^{ - {3 \over 2}}} - {1 \over 6}{x^{ - {5 \over 6}}}$
以4,9,1为为插值节点,求\(\sqrt x \)的lagrange的插值多项式 A: \( {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) + {1 \over {24}}(x - 4)(x - 9)\) B: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) + {1 \over {24}}(x - 4)(x - 9)\) C: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x +1) + {1 \over {24}}(x - 4)(x - 9)\) D: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) - {1 \over {24}}(x - 4)(x - 9)\)
以4,9,1为为插值节点,求\(\sqrt x \)的lagrange的插值多项式 A: \( {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) + {1 \over {24}}(x - 4)(x - 9)\) B: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) + {1 \over {24}}(x - 4)(x - 9)\) C: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x +1) + {1 \over {24}}(x - 4)(x - 9)\) D: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) - {1 \over {24}}(x - 4)(x - 9)\)
set1 = {x for x in range(10)} print(set1) 以上代码的运行结果为? A: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} B: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10} C: {1, 2, 3, 4, 5, 6, 7, 8, 9} D: {1, 2, 3, 4, 5, 6, 7, 8, 9,10}
set1 = {x for x in range(10)} print(set1) 以上代码的运行结果为? A: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} B: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10} C: {1, 2, 3, 4, 5, 6, 7, 8, 9} D: {1, 2, 3, 4, 5, 6, 7, 8, 9,10}
用边界值分析法,不考虑健壮性,假定1<;X<;10,那么X在测试中应该取的边界值是 A: X=1,X=2,X=9,X=10 B: X=2,X=5,X=9 C: X=1,X=10 D: X=1,X=5,X=6,X=10
用边界值分析法,不考虑健壮性,假定1<;X<;10,那么X在测试中应该取的边界值是 A: X=1,X=2,X=9,X=10 B: X=2,X=5,X=9 C: X=1,X=10 D: X=1,X=5,X=6,X=10
输出九九乘法表。 1 2 3 4 5 6 7 8 9 --------------------------------------------------------------------- 1*1=1 2*1=2 2*2=4 3*1=3 3*2=6 3*3=9 4*1=4 4*2=8 4*3=12 4*4=16 5*1=5 5*2=10 5*3=15 5*4=20 5*5=25 6*1=6 6*2=12 6*3=18 6*4=24 6*5=30 6*6=36 7*1=7 7*2=14 7*3=21 7*4=28 7*5=35 7*6=42 7*7=49 8*1=8 8*2=16 8*3=24 8*4=32 8*5=40 8*6=48 8*7=56 8*8=64 9*1=9 9*2=18 9*3=27 9*4=36 9*5=45 9*6=54 9*7=63 9*8=72 9*9=81
输出九九乘法表。 1 2 3 4 5 6 7 8 9 --------------------------------------------------------------------- 1*1=1 2*1=2 2*2=4 3*1=3 3*2=6 3*3=9 4*1=4 4*2=8 4*3=12 4*4=16 5*1=5 5*2=10 5*3=15 5*4=20 5*5=25 6*1=6 6*2=12 6*3=18 6*4=24 6*5=30 6*6=36 7*1=7 7*2=14 7*3=21 7*4=28 7*5=35 7*6=42 7*7=49 8*1=8 8*2=16 8*3=24 8*4=32 8*5=40 8*6=48 8*7=56 8*8=64 9*1=9 9*2=18 9*3=27 9*4=36 9*5=45 9*6=54 9*7=63 9*8=72 9*9=81
设二维随机变量(X,Y)的联合分布列为 XY -1 0 1 -1 1 1/6 1/9 2/9 1/3 0 1/6则P{XY=1}为( ) A: 0 B: 1/6 C: 1/3 D: 2/3
设二维随机变量(X,Y)的联合分布列为 XY -1 0 1 -1 1 1/6 1/9 2/9 1/3 0 1/6则P{XY=1}为( ) A: 0 B: 1/6 C: 1/3 D: 2/3