如何用Maltab求解 y'(t) = 2*t , y(0) = 0?
如何用Maltab求解 y'(t) = 2*t , y(0) = 0?
下列Matlab代码,能求解微分方程 y'(t) = 2*t , y(0) = 1的是( ) A: tspan = [0 5];<br> y0 = 0;<br> [t,y] = ode45(@(t,y) 2*t, tspan, y0); B: tspan = [0 5];<br>y0 = 1;<br>[t,y] = ode45(@(t,y) 2*t, tspan, y0); C: tspan = [0 5];<br>y0 = 1;<br>[t,y] = ode45(@(t,y) 2*y, tspan, y0); D: tspan = [0 5];<br>y0 = 1;<br>[t,y] = ode45(@(t,y) 2*t*y, tspan, y0);
下列Matlab代码,能求解微分方程 y'(t) = 2*t , y(0) = 1的是( ) A: tspan = [0 5];<br> y0 = 0;<br> [t,y] = ode45(@(t,y) 2*t, tspan, y0); B: tspan = [0 5];<br>y0 = 1;<br>[t,y] = ode45(@(t,y) 2*t, tspan, y0); C: tspan = [0 5];<br>y0 = 1;<br>[t,y] = ode45(@(t,y) 2*y, tspan, y0); D: tspan = [0 5];<br>y0 = 1;<br>[t,y] = ode45(@(t,y) 2*t*y, tspan, y0);
以下程序的运行结果是voidswap1(intx[],inty[]){intt;t=x[0];x[0]=y[0];y[0]=t;}voidswap2(int*x,int*y){intt;t=*x;*x=*y;*y=t;}main(){inta[2]={3,5},b[2]={3,5};swap1(a,a+1);swap2(&b[0],&b[1]);printf("%d%d%d%d\n",a[0],a[1],b[0],b[1]);}
以下程序的运行结果是voidswap1(intx[],inty[]){intt;t=x[0];x[0]=y[0];y[0]=t;}voidswap2(int*x,int*y){intt;t=*x;*x=*y;*y=t;}main(){inta[2]={3,5},b[2]={3,5};swap1(a,a+1);swap2(&b[0],&b[1]);printf("%d%d%d%d\n",a[0],a[1],b[0],b[1]);}
【计算题】描述某系统的微分方程为 y”(t) + 5y’(t) + 6y(t) = f(t) 求 当 f(t) = 2e-t , t ≥ 0 ; y(0)=2 , y ’ (0)= -1 时的全解; (10.0分)
【计算题】描述某系统的微分方程为 y”(t) + 5y’(t) + 6y(t) = f(t) 求 当 f(t) = 2e-t , t ≥ 0 ; y(0)=2 , y ’ (0)= -1 时的全解; (10.0分)
以下哪一项属于二阶齐次线性差分方程? A: y(t+2)-3*y(t+1)+y(t)=0 B: y(t+2)-3*y(t+1)+y(t)=2 C: (y(t+2))^2-3*y(t+1)+y(t)=0 D: y(t+1)+3*y(t)=0
以下哪一项属于二阶齐次线性差分方程? A: y(t+2)-3*y(t+1)+y(t)=0 B: y(t+2)-3*y(t+1)+y(t)=2 C: (y(t+2))^2-3*y(t+1)+y(t)=0 D: y(t+1)+3*y(t)=0
如下命令中不能实现如下微分方程组[img=327x203]17e443a5d83ce02.png[/img],在初值条件[img=172x112]17e443a5e2ead01.png[/img]下的特解求解的是: A: [x,y] = dsolve('Dx+5*x+y = exp(t)', 'Dy-x-3*y=0', 'x(0)=1', 'y(0)=0', 't') B: [x,y] = dsolve('Dx+5*x+y = exp(t)', 'Dy-x-3*y=0', 'x(0)=1, y(0)=0', 't') C: [x,y] = dsolve('Dx+5*x+y = exp(t)', 'Dy-x-3*y=0', 'x(0)=1', 'y(0)=0') D: [x,y] = dsolve('Dx+5*x+y = exp(t)', 'Dy-x-3*y=0', 'x(0)=1', 'y(0)=0', 'x')
如下命令中不能实现如下微分方程组[img=327x203]17e443a5d83ce02.png[/img],在初值条件[img=172x112]17e443a5e2ead01.png[/img]下的特解求解的是: A: [x,y] = dsolve('Dx+5*x+y = exp(t)', 'Dy-x-3*y=0', 'x(0)=1', 'y(0)=0', 't') B: [x,y] = dsolve('Dx+5*x+y = exp(t)', 'Dy-x-3*y=0', 'x(0)=1, y(0)=0', 't') C: [x,y] = dsolve('Dx+5*x+y = exp(t)', 'Dy-x-3*y=0', 'x(0)=1', 'y(0)=0') D: [x,y] = dsolve('Dx+5*x+y = exp(t)', 'Dy-x-3*y=0', 'x(0)=1', 'y(0)=0', 'x')
产生周期为1的三角波信号,正确的代码是 A: t=0:1/1000:5;y=sawtooth(2*pi*t,0.5);号,正确的代码是 B: t=0:1/1000:5;y=sawtooth(2*pi*10*t,0.5);,正确的代码是 C: t=0:1/1000:5;y=square(2*pi*t,0.5);� D: t=0:1/1000:5;y=square(2*pi*10*t,0.5);
产生周期为1的三角波信号,正确的代码是 A: t=0:1/1000:5;y=sawtooth(2*pi*t,0.5);号,正确的代码是 B: t=0:1/1000:5;y=sawtooth(2*pi*10*t,0.5);,正确的代码是 C: t=0:1/1000:5;y=square(2*pi*t,0.5);� D: t=0:1/1000:5;y=square(2*pi*10*t,0.5);
【单选题】一平面简谐波,其振幅为 A ,频率为 n .波沿 x 轴 负 方向 传播.设 t = t 0 时刻波形如图所示.则 x = 0 处质点的振动方程为 A. y=Acos[2π n (t+t 0 )+π/2] B. y=Acos[2π n (t-t 0 )+π/2] C. y=Acos[2π n (t-t 0 )-π/2] D. y=Acos[2π n (t-t 0 )+π]
【单选题】一平面简谐波,其振幅为 A ,频率为 n .波沿 x 轴 负 方向 传播.设 t = t 0 时刻波形如图所示.则 x = 0 处质点的振动方程为 A. y=Acos[2π n (t+t 0 )+π/2] B. y=Acos[2π n (t-t 0 )+π/2] C. y=Acos[2π n (t-t 0 )-π/2] D. y=Acos[2π n (t-t 0 )+π]
已知X=1,Y=2,T=0 经程序段X=T:T=Y:Y=T 赋值后 X,Y 值分别为()
已知X=1,Y=2,T=0 经程序段X=T:T=Y:Y=T 赋值后 X,Y 值分别为()
已知f1(t)=u(t+1),f2(t)=u(t+2)-u(t-2),设y(t)= f1(t)* f2(t),则y(0)等于() A: 0 B: 1 C: 2 D: 3
已知f1(t)=u(t+1),f2(t)=u(t+2)-u(t-2),设y(t)= f1(t)* f2(t),则y(0)等于() A: 0 B: 1 C: 2 D: 3