3.设函数$f(x)={{x}^{4}}\sin x$,则${{f}^{(9)}}(0)=$( )。 A: $\frac{9!}{5!}$ B: $\frac{5!}{9!}$ C: $\frac{1}{5!}$ D: $0$
3.设函数$f(x)={{x}^{4}}\sin x$,则${{f}^{(9)}}(0)=$( )。 A: $\frac{9!}{5!}$ B: $\frac{5!}{9!}$ C: $\frac{1}{5!}$ D: $0$
下面程序段的运行结果是( )。 A: t i=0,a[]={3,4,5,4,3}; B: { C: i]++; D: hile(a[++i]<5); E: r(i=0;i<5;i++) F: intf("%d ",a[i]); G: 4 5 6 5 4 H: 3 4 5 4 3 I: 4 5 5 5 4 J: 4 5 5 4 3
下面程序段的运行结果是( )。 A: t i=0,a[]={3,4,5,4,3}; B: { C: i]++; D: hile(a[++i]<5); E: r(i=0;i<5;i++) F: intf("%d ",a[i]); G: 4 5 6 5 4 H: 3 4 5 4 3 I: 4 5 5 5 4 J: 4 5 5 4 3
fx=1/2^x+根号2,求f(-5)+f(-4)+...+f(0)
fx=1/2^x+根号2,求f(-5)+f(-4)+...+f(0)
已知f(x)=x2-4x,则f(sinx)的最小值为( ) A: -5 B: -4 C: -3 D: 0
已知f(x)=x2-4x,则f(sinx)的最小值为( ) A: -5 B: -4 C: -3 D: 0
有代码片段:function f(y) {var x=y*y;return x;} for(var x=0;x< 5;x++) {y=f(x);document.writeln(y);}输出结果是( )。 A: 0 1 2 3 4 B: 0 1 4 9 16 C: 0 1 4 9 16 25 D: 0 1 2 3 4 5
有代码片段:function f(y) {var x=y*y;return x;} for(var x=0;x< 5;x++) {y=f(x);document.writeln(y);}输出结果是( )。 A: 0 1 2 3 4 B: 0 1 4 9 16 C: 0 1 4 9 16 25 D: 0 1 2 3 4 5
print(100-25*3%4) 应该输出【 】 A: 1 B: 97 C: 25 D: 0
print(100-25*3%4) 应该输出【 】 A: 1 B: 97 C: 25 D: 0
已知如图信号f(t)的傅里叶变换为F(jω),则F(0)=() A: 4 B: 5 C: 6 D: 3
已知如图信号f(t)的傅里叶变换为F(jω),则F(0)=() A: 4 B: 5 C: 6 D: 3
函数f(x)=-x3+3x2-4x-1在区间[0,1]内有()个实根。 A: 0 B: 1 C: 2 D: 3 E: 4 F: 5
函数f(x)=-x3+3x2-4x-1在区间[0,1]内有()个实根。 A: 0 B: 1 C: 2 D: 3 E: 4 F: 5
【单选题】如图示代码,下面哪个是正确的输出结果 A. 0 1 2 3 4 5 B. 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 C. 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 D. 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
【单选题】如图示代码,下面哪个是正确的输出结果 A. 0 1 2 3 4 5 B. 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 C. 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 D. 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
已知函数f(x)是定义在实数集R上的奇函数,且f(x)在[3,5]上是增函数,若f(5)=-2,则f(-5)、f(-3)、f(0)的大小关系是( ). A: f(0)<(-5)<f(-3) B: f(-5)<f(-3)<f(0) C: f(-3)<f(-5)<f(0) D: f(0)<f(-3)<f(-5)
已知函数f(x)是定义在实数集R上的奇函数,且f(x)在[3,5]上是增函数,若f(5)=-2,则f(-5)、f(-3)、f(0)的大小关系是( ). A: f(0)<(-5)<f(-3) B: f(-5)<f(-3)<f(0) C: f(-3)<f(-5)<f(0) D: f(0)<f(-3)<f(-5)