Chen Daming can also be written as “Daming Chen”.
Chen Daming can also be written as “Daming Chen”.
设F、G、H是非空集合A上的关系,则下面成立的是( ). A: F○(G∪H)=F○G∪F○H B: (G∪H)○F=G○F∪H○F C: (F○G)○H=F○(G○H) D: F○(G∩H)=F○G∩F○H
设F、G、H是非空集合A上的关系,则下面成立的是( ). A: F○(G∪H)=F○G∪F○H B: (G∪H)○F=G○F∪H○F C: (F○G)○H=F○(G○H) D: F○(G∩H)=F○G∩F○H
设f(x)在x = a的某个领域内有定义,则f(x)在x = a处可导的一个充分条件是( )。 A: $\lim \limits_{h \to + \infty } h[f(a + {1 \over h}) - f(a)]$存在 B: $\lim \limits_{h \to 0} {{f(a + 2h) - f(a + h)} \over h}$存在 C: $\lim \limits_{h \to 0} {{f(a + h) - f(a - h)} \over {2h}}$ D: $\lim \limits_{h \to 0} {{f(a) - f(a - h)} \over h}$
设f(x)在x = a的某个领域内有定义,则f(x)在x = a处可导的一个充分条件是( )。 A: $\lim \limits_{h \to + \infty } h[f(a + {1 \over h}) - f(a)]$存在 B: $\lim \limits_{h \to 0} {{f(a + 2h) - f(a + h)} \over h}$存在 C: $\lim \limits_{h \to 0} {{f(a + h) - f(a - h)} \over {2h}}$ D: $\lim \limits_{h \to 0} {{f(a) - f(a - h)} \over h}$
Is Dr. CHEN in?
Is Dr. CHEN in?
Chen Lan
Chen Lan
Chen Qi:
Chen Qi:
闭合水准路线的高差闭合差的计算公式为( )。 A: f h = ∑ h往 + ∑ h返 B: f h = ∑ h测 ―(H终 ―H始) C: f h = ∑ h测 D: f h = H终 ― H始
闭合水准路线的高差闭合差的计算公式为( )。 A: f h = ∑ h往 + ∑ h返 B: f h = ∑ h测 ―(H终 ―H始) C: f h = ∑ h测 D: f h = H终 ― H始
附合水准路线的高差闭合差的计算公式为()。 A: f h = ∑ h往 + ∑ h返 B: f h = ∑ h测 C: f h = ∑ h测 ―(H终 ―H始) D: f h = H终 ― H始
附合水准路线的高差闭合差的计算公式为()。 A: f h = ∑ h往 + ∑ h返 B: f h = ∑ h测 C: f h = ∑ h测 ―(H终 ―H始) D: f h = H终 ― H始
The replicated study done by Chen and Yang revealed similar findings as Chen’s 1993 study.
The replicated study done by Chen and Yang revealed similar findings as Chen’s 1993 study.
将共价键⑴C—H,⑵N—H,⑶F—H,⑷O—H按极性由大到小的顺序进行排列为()。 A: F—H>O—H>N—H>C—H B: O—H>F—H>N—H>C—H C: O—H>N—H>F—H>C—H D: C—H>N—H>O—H>F—H
将共价键⑴C—H,⑵N—H,⑶F—H,⑷O—H按极性由大到小的顺序进行排列为()。 A: F—H>O—H>N—H>C—H B: O—H>F—H>N—H>C—H C: O—H>N—H>F—H>C—H D: C—H>N—H>O—H>F—H