设\( {\bf{A}} \) 为三阶矩阵,\( { { \bf{A}}^*} \)是\( {\bf{A}} \)的伴随矩阵,且\( \left| {\bf{A}} \right| = 1 \),则\( \left| {2 { { \bf{A}}^{ - 1}} + 3 { { \bf{A}}^*}} \right| = \)______
设\( {\bf{A}} \) 为三阶矩阵,\( { { \bf{A}}^*} \)是\( {\bf{A}} \)的伴随矩阵,且\( \left| {\bf{A}} \right| = 1 \),则\( \left| {2 { { \bf{A}}^{ - 1}} + 3 { { \bf{A}}^*}} \right| = \)______
${\bf P}(X=-2)=\,$ ${\bf P}(X=1)=\,$ ${\bf P}(X=0)=\,$______
${\bf P}(X=-2)=\,$ ${\bf P}(X=1)=\,$ ${\bf P}(X=0)=\,$______
${\bf P}(X=4)=\,$ ${\bf P}(X=3)=\,$ ${\bf P}(X=2)=\,$ ${\bf P}(X=1)=\,$______
${\bf P}(X=4)=\,$ ${\bf P}(X=3)=\,$ ${\bf P}(X=2)=\,$ ${\bf P}(X=1)=\,$______
${\bf P}(X=2)=\,$ ${\bf P}(X=1)=\,$______
${\bf P}(X=2)=\,$ ${\bf P}(X=1)=\,$______
${\rm var}(X)=\,$ ${\bf E}[X]=\,$ ${\bf P}(X=3)=\,$ ${\bf P}(X=-2)=\,$ ${\bf P}(X=1)=\,$ ${\bf P}(X=0)=\,$______
${\rm var}(X)=\,$ ${\bf E}[X]=\,$ ${\bf P}(X=3)=\,$ ${\bf P}(X=-2)=\,$ ${\bf P}(X=1)=\,$ ${\bf P}(X=0)=\,$______
StringBuffer bf1= newStringBuffer("0123456");System.out.println(bf1.length());控制台输出: System.out.println(bf1.capacity());控制台输出:
StringBuffer bf1= newStringBuffer("0123456");System.out.println(bf1.length());控制台输出: System.out.println(bf1.capacity());控制台输出:
设${\bf{r}}$是从地心指向卫星质心的矢量,则表达式____总成立。 A: ${\bf{r}} \cdot {\bf{\dot r}} = r \cdot \dot r$ B: $\left| {{\bf{r}} \times {\bf{\dot r}}} \right| = r \cdot \dot r$ C: ${\bf{r}} \cdot {\bf{\ddot r}} = r \cdot \ddot r$ D: $\left| {{\bf{r}} \times {\bf{\ddot r}}} \right| = r \cdot \ddot r$
设${\bf{r}}$是从地心指向卫星质心的矢量,则表达式____总成立。 A: ${\bf{r}} \cdot {\bf{\dot r}} = r \cdot \dot r$ B: $\left| {{\bf{r}} \times {\bf{\dot r}}} \right| = r \cdot \dot r$ C: ${\bf{r}} \cdot {\bf{\ddot r}} = r \cdot \ddot r$ D: $\left| {{\bf{r}} \times {\bf{\ddot r}}} \right| = r \cdot \ddot r$
(项目1)S7-300 PLC通电后,CPU面板上“BF”指示灯亮,表示
(项目1)S7-300 PLC通电后,CPU面板上“BF”指示灯亮,表示
All of the following techniques are rough-cut capacity planning techniques EXCEPT A: capacity planning using overall factors (CPOF) B: bill of capacity C: capacity requirements planning (CRP) D: resource profile
All of the following techniques are rough-cut capacity planning techniques EXCEPT A: capacity planning using overall factors (CPOF) B: bill of capacity C: capacity requirements planning (CRP) D: resource profile
When calculating the bearing capacity of members under combined load of shear and torsion, the interaction relation between shear and torsion should be considered for concrete bearing capacity while the reinforcement bearing capacity is just the linear superposition of shear bearing capacity and torsional bearing capacity of reinforcement.
When calculating the bearing capacity of members under combined load of shear and torsion, the interaction relation between shear and torsion should be considered for concrete bearing capacity while the reinforcement bearing capacity is just the linear superposition of shear bearing capacity and torsional bearing capacity of reinforcement.