• 2022-07-26 问题

    17e0b849d3a4a3b.jpg,计算[img=19x34]17e0ab14a855463.jpg[/img]的实验命令为( ). A: syms x; f=diff((1+sin(x)^2)/cos(x),1)f=2*sin(x) + (sin(x)*(sin(x)^2 + 1))/cos(x)^2 B: f=diff((1+sinx^2)/cosx,1)f=1/2/x^(1/2)/(1-x)^(1/2) C: syms x;f=diff((1+sinx^2)/cosx,1)f=2*sin(x) + (sin(x)*(sin(x)^2 + 1))/cos(x)^2

    17e0b849d3a4a3b.jpg,计算[img=19x34]17e0ab14a855463.jpg[/img]的实验命令为( ). A: syms x; f=diff((1+sin(x)^2)/cos(x),1)f=2*sin(x) + (sin(x)*(sin(x)^2 + 1))/cos(x)^2 B: f=diff((1+sinx^2)/cosx,1)f=1/2/x^(1/2)/(1-x)^(1/2) C: syms x;f=diff((1+sinx^2)/cosx,1)f=2*sin(x) + (sin(x)*(sin(x)^2 + 1))/cos(x)^2

  • 2022-07-02 问题

    设f(x)是可导函数,且f′(x)=sin<sup>2</sup>&#91;sin(x+1)&#93;,f(0)=4,f(x)的反函数是x=φ(y),则φ′(4)=()。 A: 1/sin<sup>2</sup>(sin1) B: sin<sup>2</sup>(sin1) C: -sin<sup>2</sup>(sin1) D: -1/sin<sup>2</sup>(sin1)

    设f(x)是可导函数,且f′(x)=sin<sup>2</sup>&#91;sin(x+1)&#93;,f(0)=4,f(x)的反函数是x=φ(y),则φ′(4)=()。 A: 1/sin<sup>2</sup>(sin1) B: sin<sup>2</sup>(sin1) C: -sin<sup>2</sup>(sin1) D: -1/sin<sup>2</sup>(sin1)

  • 2021-04-14 问题

    【单选题】如图所示,函数f(x)=sin(ωx+φ) 的图象与二次函数y=- x 2 + x+1的图象交于点A(x 1 ,0)和B(x 2 ,1),则f(x)的解析式为() A. f(x)=sin B. f(x)=sin C. f(x)=sin D. f(x)=sin

    【单选题】如图所示,函数f(x)=sin(ωx+φ) 的图象与二次函数y=- x 2 + x+1的图象交于点A(x 1 ,0)和B(x 2 ,1),则f(x)的解析式为() A. f(x)=sin B. f(x)=sin C. f(x)=sin D. f(x)=sin

  • 2022-06-16 问题

    令f(x)=(),则f(n)(x)=sin(x+nπ/2),

    令f(x)=(),则f(n)(x)=sin(x+nπ/2),

  • 2022-06-06 问题

    设 $f(\sin x)=\cos2x+1$,则 $f(\cos x)=$( ). A: $\cos^2x$ B: $-2\cos^2x$ C: $-2\sin^2x$ D: $2-2\cos^2x$

    设 $f(\sin x)=\cos2x+1$,则 $f(\cos x)=$( ). A: $\cos^2x$ B: $-2\cos^2x$ C: $-2\sin^2x$ D: $2-2\cos^2x$

  • 2021-04-14 问题

    For[i=1;f=Sin[x],i&lt;3,i++,f=Sin[1+f];Print[f]]? Sin[1+Sin[x]] ; ; ; ; ; ;;Sin[1+Sin[1+Sin[x]]]|Sin[1+Sin[x]]Sin[Sin[2+Sin[x]]]|Sin[Sin[1+x]]Sin[1+Sin[1+Sin[x]]]|Sin[Sin[1+x]]Sin[Sin[1+Sin[1+x]]]

    For[i=1;f=Sin[x],i&lt;3,i++,f=Sin[1+f];Print[f]]? Sin[1+Sin[x]] ; ; ; ; ; ;;Sin[1+Sin[1+Sin[x]]]|Sin[1+Sin[x]]Sin[Sin[2+Sin[x]]]|Sin[Sin[1+x]]Sin[1+Sin[1+Sin[x]]]|Sin[Sin[1+x]]Sin[Sin[1+Sin[1+x]]]

  • 2022-06-30 问题

    函数[img=79x27]180355ae2690a03.png[/img]在x=2处的二阶泰勒展开式为 A: exp(sin(2))+cos(2)*exp(sin(2))*(x-2)+exp(sin(2))*(sin(2)/2-cos(2)^2/2)*(x-2)^2 B: exp(sin(2))+cos(2)*exp(sin(2))*(x-2)-exp(sin(2))*(sin(2)/2-cos(2)^2/2)*(x-2)^2 C: exp(sin(2))+cos(2)*exp(sin(2))*(x-2)-exp(sin(2))*(sin(2)/2+cos(2)^2/2)*(x-2)^2 D: exp(sin(2))+cos(2)*exp(sin(2))*(x-2)+exp(sin(2))*(sin(2)/2+cos(2)^2/2)*(x-2)^2

    函数[img=79x27]180355ae2690a03.png[/img]在x=2处的二阶泰勒展开式为 A: exp(sin(2))+cos(2)*exp(sin(2))*(x-2)+exp(sin(2))*(sin(2)/2-cos(2)^2/2)*(x-2)^2 B: exp(sin(2))+cos(2)*exp(sin(2))*(x-2)-exp(sin(2))*(sin(2)/2-cos(2)^2/2)*(x-2)^2 C: exp(sin(2))+cos(2)*exp(sin(2))*(x-2)-exp(sin(2))*(sin(2)/2+cos(2)^2/2)*(x-2)^2 D: exp(sin(2))+cos(2)*exp(sin(2))*(x-2)+exp(sin(2))*(sin(2)/2+cos(2)^2/2)*(x-2)^2

  • 2022-06-18 问题

    f(z)=e^(z^2)*sin(z^2),求f(z)展成Z的幂级数,

    f(z)=e^(z^2)*sin(z^2),求f(z)展成Z的幂级数,

  • 2022-10-27 问题

    下列计算正确的是() A: log2cos7π4=-12 B: 若f(cos x)=cos 2x,则f(sin 30°)=12 C: 若sin(π+α)=-12,则sin(4π-α)=-12 D: 设tan(π+α)=2,则sin(α-π)+cos(π-α)sin(π+α)-cos(π-α)=1

    下列计算正确的是() A: log2cos7π4=-12 B: 若f(cos x)=cos 2x,则f(sin 30°)=12 C: 若sin(π+α)=-12,则sin(4π-α)=-12 D: 设tan(π+α)=2,则sin(α-π)+cos(π-α)sin(π+α)-cos(π-α)=1

  • 2021-04-14 问题

    序列f(k)=sin(k*1/2)是周期序列

    序列f(k)=sin(k*1/2)是周期序列

  • 1 2 3 4 5 6 7 8 9 10