计量资料的完全随机设计实验,在组与组之间样本含量相等(n1=n2)条件下,每组样本含量(n)的计算公式为() A: n=2[(s/d)(zα+zβ)]2 B: n=3[(s/d)(zα+zβ)]2 C: n=4[(s/d)(zα+zβ)]2 D: n=5[(s/d)(zα+zβ)]2
计量资料的完全随机设计实验,在组与组之间样本含量相等(n1=n2)条件下,每组样本含量(n)的计算公式为() A: n=2[(s/d)(zα+zβ)]2 B: n=3[(s/d)(zα+zβ)]2 C: n=4[(s/d)(zα+zβ)]2 D: n=5[(s/d)(zα+zβ)]2
函数 [img=197x96]1803dbfc46ca27a.png[/img]表示的曲面称为椭圆锥面,绘制这个曲面的程序是: A: s=-5:0.1:5;t=-5:0.1:5;[x, y]=meshgrid(s, t);z=sqrt(x.^2+y.^2);mesh(x,y,z) B: a=3;b=2;s=-5:0.1:5;t=-5:0.1:5;[x, y]=meshgrid(s, t);z=sqrt(x.^2/a/a+y.^2/b/b);mesh(x, y, z) C: a=3;b=2;s=-5:0.1:5;t=-5:0.1:5;[x, y]=meshgrid(s, t);z=sqrt(x.^2/a*a+y.^2/b*b);mesh(x, y, z) D: a=3;b=2;s=-5:0.1:5;t=-5:0.1:5;[x, y]=meshgrid(s, t);z=sqrt(x^2/a/a+y^2/b/b);mesh(x, y, z);
函数 [img=197x96]1803dbfc46ca27a.png[/img]表示的曲面称为椭圆锥面,绘制这个曲面的程序是: A: s=-5:0.1:5;t=-5:0.1:5;[x, y]=meshgrid(s, t);z=sqrt(x.^2+y.^2);mesh(x,y,z) B: a=3;b=2;s=-5:0.1:5;t=-5:0.1:5;[x, y]=meshgrid(s, t);z=sqrt(x.^2/a/a+y.^2/b/b);mesh(x, y, z) C: a=3;b=2;s=-5:0.1:5;t=-5:0.1:5;[x, y]=meshgrid(s, t);z=sqrt(x.^2/a*a+y.^2/b*b);mesh(x, y, z) D: a=3;b=2;s=-5:0.1:5;t=-5:0.1:5;[x, y]=meshgrid(s, t);z=sqrt(x^2/a/a+y^2/b/b);mesh(x, y, z);
设方程\(z^2+y^2+z^2 = 4z\)确定函数\(z=z(x,y)\),则\( { { {\partial ^2}z} \over {\partial {x^2}}} =\) A: \( { { { { (2 - z)}^2} + {x^2}} \over { { {(2+ z)}^3}}}\) B: \( { { { { (2 - z)}^2} + {x^2}} \over { { {(2 - z)}^3}}}\) C: \( { { { { (2 - z)}^2} -{x^2}} \over { { {(2 - z)}^3}}}\) D: \( { { { { (2 + z)}^2} + {x^2}} \over { { {(2 - z)}^3}}}\)
设方程\(z^2+y^2+z^2 = 4z\)确定函数\(z=z(x,y)\),则\( { { {\partial ^2}z} \over {\partial {x^2}}} =\) A: \( { { { { (2 - z)}^2} + {x^2}} \over { { {(2+ z)}^3}}}\) B: \( { { { { (2 - z)}^2} + {x^2}} \over { { {(2 - z)}^3}}}\) C: \( { { { { (2 - z)}^2} -{x^2}} \over { { {(2 - z)}^3}}}\) D: \( { { { { (2 + z)}^2} + {x^2}} \over { { {(2 - z)}^3}}}\)
9. 已知函数$z=z(x,y)$由${{z}^{3}}-3xyz={{a}^{3}}$确定,则$\frac{{{\partial }^{2}}z}{\partial x\partial y}=$( ) A: $\frac{z({{z}^{4}}-2xy{{z}^{2}}-{{x}^{2}}{{y}^{2}})}{{{({{z}^{2}}-xy)}^{3}}}$ B: $\frac{z({{z}^{4}}-2xy{{z}^{2}}-xy)}{{{({{z}^{2}}-xy)}^{2}}}$ C: $\frac{z({{z}^{3}}-2xyz-{{x}^{2}}{{y}^{2}})}{{{({{z}^{2}}-xy)}^{3}}}$ D: $\frac{z({{z}^{3}}-2xy{{z}^{2}}-{{x}^{2}}y)}{{{({{z}^{2}}-xy)}^{3}}}$
9. 已知函数$z=z(x,y)$由${{z}^{3}}-3xyz={{a}^{3}}$确定,则$\frac{{{\partial }^{2}}z}{\partial x\partial y}=$( ) A: $\frac{z({{z}^{4}}-2xy{{z}^{2}}-{{x}^{2}}{{y}^{2}})}{{{({{z}^{2}}-xy)}^{3}}}$ B: $\frac{z({{z}^{4}}-2xy{{z}^{2}}-xy)}{{{({{z}^{2}}-xy)}^{2}}}$ C: $\frac{z({{z}^{3}}-2xyz-{{x}^{2}}{{y}^{2}})}{{{({{z}^{2}}-xy)}^{3}}}$ D: $\frac{z({{z}^{3}}-2xy{{z}^{2}}-{{x}^{2}}y)}{{{({{z}^{2}}-xy)}^{3}}}$
\( xoz \) 坐标面上的直线\( x = z - 2 \)绕\( z \)轴旋转而成的圆锥面的方程为( ) A: \( {x^2} - {y^2} = {(z - 2)^2} \) B: \( {x^2} + {y^2} = {(z - 2)^2} \) C: \( {z^2} + {y^2} = {(x - 2)^2} \) D: \( {z^2} + {x^2} = {(y - 2)^2} \)
\( xoz \) 坐标面上的直线\( x = z - 2 \)绕\( z \)轴旋转而成的圆锥面的方程为( ) A: \( {x^2} - {y^2} = {(z - 2)^2} \) B: \( {x^2} + {y^2} = {(z - 2)^2} \) C: \( {z^2} + {y^2} = {(x - 2)^2} \) D: \( {z^2} + {x^2} = {(y - 2)^2} \)
【简答题】设 z 1 =4 + 3i , z 2 =2 - 3i ,计算 z 1 · z 2
【简答题】设 z 1 =4 + 3i , z 2 =2 - 3i ,计算 z 1 · z 2
1)z^2=z拔(2)z^2+|z|=0
1)z^2=z拔(2)z^2+|z|=0
下列公式中,用来计算标注分数的公式是( ) A: Z=μ/S B: Z=(X- X ̅)/σ2 C: Z= X ̅ /σ D: (X- X ̅)/s
下列公式中,用来计算标注分数的公式是( ) A: Z=μ/S B: Z=(X- X ̅)/σ2 C: Z= X ̅ /σ D: (X- X ̅)/s
以点\( (2, - 1,2) \)求球心,3为半径的球面方程为( ) A: \( {(x + 2)^2} + {(y - 1)^2} + {(z + 2)^2} = 9 \) B: \( {(x + 2)^2} + {(y - 1)^2} + {(z + 2)^2} = 3 \) C: \( {(x - 2)^2} + {(y + 1)^2} + {(z - 2)^2} = 9 \) D: \( {(x - 2)^2} + {(y + 1)^2} + {(z - 2)^2} = 3 \)
以点\( (2, - 1,2) \)求球心,3为半径的球面方程为( ) A: \( {(x + 2)^2} + {(y - 1)^2} + {(z + 2)^2} = 9 \) B: \( {(x + 2)^2} + {(y - 1)^2} + {(z + 2)^2} = 3 \) C: \( {(x - 2)^2} + {(y + 1)^2} + {(z - 2)^2} = 9 \) D: \( {(x - 2)^2} + {(y + 1)^2} + {(z - 2)^2} = 3 \)
信号$x[n]=(n-3)u(n)$的Z变换结果是 A: $\frac{1}{z^2(z-1)^2}$ B: $\frac{1}{z^2(z-1)}$ C: $\frac{1}{z(z-1)^2}$ D: $\frac{1}{z^2(z+1)^2}$
信号$x[n]=(n-3)u(n)$的Z变换结果是 A: $\frac{1}{z^2(z-1)^2}$ B: $\frac{1}{z^2(z-1)}$ C: $\frac{1}{z(z-1)^2}$ D: $\frac{1}{z^2(z+1)^2}$