x>;0, 函数 y=4x+1/x 的最小值是: A: 5 B: 4 C: 3 D: 2
x>;0, 函数 y=4x+1/x 的最小值是: A: 5 B: 4 C: 3 D: 2
计算(1)(x+3)(2x2一4x+1)(2)(3x3一2x+1)(2-x)(3)3(x一2)(x+1)一2(x一5)(x-3)(4)x(x2一4)一(x+3)(x2一3x+2)
计算(1)(x+3)(2x2一4x+1)(2)(3x3一2x+1)(2-x)(3)3(x一2)(x+1)一2(x一5)(x-3)(4)x(x2一4)一(x+3)(x2一3x+2)
y=arcsin(4x+1)的反函数为 A: y=(sinx-1)/4, x∈R B: y=sin[(x-1)/4], x∈R C: y=sin[(x-1)/4], x∈[-π/2,π/2] D: y=(sinx-1)/4, x∈[-π/2,π/2]
y=arcsin(4x+1)的反函数为 A: y=(sinx-1)/4, x∈R B: y=sin[(x-1)/4], x∈R C: y=sin[(x-1)/4], x∈[-π/2,π/2] D: y=(sinx-1)/4, x∈[-π/2,π/2]
中国大学MOOC: x>0, 函数 y=4x+1/x 的最小值是:
中国大学MOOC: x>0, 函数 y=4x+1/x 的最小值是:
在区间(-1,0)内,下列函数中单调增加的是() A: A.y=-4x+1 B: B.y=5x-3 C: C.y=x(2)+1 D: D.y=|x|+2
在区间(-1,0)内,下列函数中单调增加的是() A: A.y=-4x+1 B: B.y=5x-3 C: C.y=x(2)+1 D: D.y=|x|+2
求不定积分[img=112x35]17da6538063a9e4.png[/img]; ( ) A: (x^4*log(x)^2)/4 + (x^4*(log(x) - 1/4))/ B: (x^4*log(x)^2)/4 - (x^4*(log(x) - 1/4))/8 C: (x^4*log(x)^2)/4 - (x^4*(log(x) - 1/4)) D: (x^4*log(x)^2)/4 + (x^4*(log(x) - 1/4))/8
求不定积分[img=112x35]17da6538063a9e4.png[/img]; ( ) A: (x^4*log(x)^2)/4 + (x^4*(log(x) - 1/4))/ B: (x^4*log(x)^2)/4 - (x^4*(log(x) - 1/4))/8 C: (x^4*log(x)^2)/4 - (x^4*(log(x) - 1/4)) D: (x^4*log(x)^2)/4 + (x^4*(log(x) - 1/4))/8
随机变量X的分布律如下表则D(4X+1)的值为() A: 7/8 B: 15/8 C: 71/64 D: 71/4
随机变量X的分布律如下表则D(4X+1)的值为() A: 7/8 B: 15/8 C: 71/64 D: 71/4
A={X|X≤1},B={X|X>-4},则A∩B=__________. A: {X|X≤1} B: {X|x>-4} C: {X|-4
A={X|X≤1},B={X|X>-4},则A∩B=__________. A: {X|X≤1} B: {X|x>-4} C: {X|-4
函数f(x)=的全部间断点为 A: x=-1及x=4 B: x=-1及x=-4 C: x=1及x=-4 D: x=1及x=4
函数f(x)=的全部间断点为 A: x=-1及x=4 B: x=-1及x=-4 C: x=1及x=-4 D: x=1及x=4
以4,9,1为为插值节点,求\(\sqrt x \)的lagrange的插值多项式 A: \( {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) + {1 \over {24}}(x - 4)(x - 9)\) B: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) + {1 \over {24}}(x - 4)(x - 9)\) C: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x +1) + {1 \over {24}}(x - 4)(x - 9)\) D: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) - {1 \over {24}}(x - 4)(x - 9)\)
以4,9,1为为插值节点,求\(\sqrt x \)的lagrange的插值多项式 A: \( {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) + {1 \over {24}}(x - 4)(x - 9)\) B: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) + {1 \over {24}}(x - 4)(x - 9)\) C: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x +1) + {1 \over {24}}(x - 4)(x - 9)\) D: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) - {1 \over {24}}(x - 4)(x - 9)\)