y=arcsin(4x+1)的反函数为
A: y=(sinx-1)/4, x∈R
B: y=sin[(x-1)/4], x∈R
C: y=sin[(x-1)/4], x∈[-π/2,π/2]
D: y=(sinx-1)/4, x∈[-π/2,π/2]
A: y=(sinx-1)/4, x∈R
B: y=sin[(x-1)/4], x∈R
C: y=sin[(x-1)/4], x∈[-π/2,π/2]
D: y=(sinx-1)/4, x∈[-π/2,π/2]
举一反三
- 设A=,且A的特征值为1,2,3,则有() A: x=2,y=4,z=8 B: x=-1,y=4,z∈R C: x=-2,y=2,z∈R D: x=-1,y=4,z=3
- 已知int x=3,y=4;,写出下列表达式的值 (1) (x,y) (2) x>y?x:y (3) x?y:x (4) (x>y)?(y>=2)?1:2:(y>x)?x:y
- 方程${{x}^{2}}{{y}^{''}}-(x+2)(x{{y}^{'}}-y)={{x}^{4}}$的通解是( ) A: $y={{C}_{1}}x+{{C}_{2}}{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{2}})$ B: $y={{C}_{1}}x+{{C}_{2}}{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{4}})$ C: $y={{C}_{1}}x+{{C}_{2}}x{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{4}})$ D: $y={{C}_{1}}x+{{C}_{2}}x{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{2}})$
- 设x=3,y=1,使y的值为4的语句是( )。 A: x=4,y=x++; B: y=++x-1; C: y=(++x,y=2); D: y+=1&&(++x,y=x);
- 求微分方程[img=143x21]17da5f14490e50e.png[/img]的通解,实验命令为(). A: dsolve(D2y-2*Dy+5*y=sin(2*x),x)ans =exp(x)*sin(2*x)*C2+exp(x)*cos(2*x)*C1+1/17*sin(2*x)+4/17*cos(2*x) B: dsolve('D2y-2*Dy+5*y=sin(2*x)','x')ans =cos(2*x)*(sin(4*x)/17 - cos(4*x)/68 + 1/4) - sin(2*x)*(cos(4*x)/17 + sin(4*x)/68) + C1*cos(2*x)*exp(x) - C2*sin(2*x)*exp(x) C: dsolve(D2y-2*Dy+5*y=sin(2*x),'x','y')ans =exp(x)*sin(2*x)*C2+exp(x)*cos(2*x)*C1+1/17*sin(2*x)+4/17*cos(2*x)