若执行以下程序时,则变量e的值是( )。int a=3,b=4,c=5,d=6,e=0;if(ac) e=1 else if(c A: 1 B: 2 C: 3 D: 4
若执行以下程序时,则变量e的值是( )。int a=3,b=4,c=5,d=6,e=0;if(ac) e=1 else if(c A: 1 B: 2 C: 3 D: 4
表达式17%4/8的值为( ) A: 2 B: 0 C: 4 D: 1
表达式17%4/8的值为( ) A: 2 B: 0 C: 4 D: 1
background:url(2、png),url(1、jpg),url(3、png),url(4、jpg);},表示哪张图片处在最上层() A: 2、png B: 1、jpg C: 3、png D: 4、jpg
background:url(2、png),url(1、jpg),url(3、png),url(4、jpg);},表示哪张图片处在最上层() A: 2、png B: 1、jpg C: 3、png D: 4、jpg
f(x)在[0,1]上有连续的二阶导数,f(0)=f(1)=0,任意x属于[0,...715af2ac3f81f8.png"]
f(x)在[0,1]上有连续的二阶导数,f(0)=f(1)=0,任意x属于[0,...715af2ac3f81f8.png"]
以下代码的运行结果为( )。 A: = 17 B: = 6 C: sult = a % b if (a % b >4) else a D: 0 E: 1 F: 2 G: 5
以下代码的运行结果为( )。 A: = 17 B: = 6 C: sult = a % b if (a % b >4) else a D: 0 E: 1 F: 2 G: 5
库面板可以存储( )。1.各种元件 2.声音3.位图4.视频 A: eq \o\ac(○,1)1 B: eq \o\ac(○,1)1、 eq \o\ac(○,2)2、 eq \o\ac(○,3)3 C: eq \o\ac(○,2)2、 eq \o\ac(○,4)4 D: eq \o\ac(○,1)1、 eq \o\ac(○,2)2、 eq \o\ac(○,3)3、 eq \o\ac(○,4)4
库面板可以存储( )。1.各种元件 2.声音3.位图4.视频 A: eq \o\ac(○,1)1 B: eq \o\ac(○,1)1、 eq \o\ac(○,2)2、 eq \o\ac(○,3)3 C: eq \o\ac(○,2)2、 eq \o\ac(○,4)4 D: eq \o\ac(○,1)1、 eq \o\ac(○,2)2、 eq \o\ac(○,3)3、 eq \o\ac(○,4)4
估计积分\(\int_2^0 { { e^ { { x^2} - x}}} dx\)的值为( )。(利用估值定理) A: \([ - 2{e^2}, - 2{e^{ - {1 \over 4}}}]\) B: \([ - 2{e^2}, - 2{e^ { { 1 \over 4}}}]\) C: \([2{e^2},2{e^{ - {1 \over 4}}}]\) D: \([2{e^2},2{e^ { { 1 \over 4}}}]\)
估计积分\(\int_2^0 { { e^ { { x^2} - x}}} dx\)的值为( )。(利用估值定理) A: \([ - 2{e^2}, - 2{e^{ - {1 \over 4}}}]\) B: \([ - 2{e^2}, - 2{e^ { { 1 \over 4}}}]\) C: \([2{e^2},2{e^{ - {1 \over 4}}}]\) D: \([2{e^2},2{e^ { { 1 \over 4}}}]\)
直线l经过P(2,=5),且点A(3,-2)和点B(-1,6)到l得距离之比为1:2,则直线l方程是( ). A: χ+y+3=0或17χ+y-29=0 B: 2χ-y-9—0或17χ+y-29=0 C: χ+y+3=0 D: 17χ+y-29=0 E: 以上结论均不正确
直线l经过P(2,=5),且点A(3,-2)和点B(-1,6)到l得距离之比为1:2,则直线l方程是( ). A: χ+y+3=0或17χ+y-29=0 B: 2χ-y-9—0或17χ+y-29=0 C: χ+y+3=0 D: 17χ+y-29=0 E: 以上结论均不正确
利用性质6(估值定理)估计积分\(\int_2^0 { { e^ { { x^2} - x}}} dx\)的值为( )。 A: \([ - 2{e^2}, - 2{e^{ - {1 \over 4}}}]\) B: \([ - 2{e^2}, - 2{e^ { { 1 \over 4}}}]\) C: \([2{e^2},2{e^{ - {1 \over 4}}}]\) D: \([2{e^2},2{e^ { { 1 \over 4}}}]\)
利用性质6(估值定理)估计积分\(\int_2^0 { { e^ { { x^2} - x}}} dx\)的值为( )。 A: \([ - 2{e^2}, - 2{e^{ - {1 \over 4}}}]\) B: \([ - 2{e^2}, - 2{e^ { { 1 \over 4}}}]\) C: \([2{e^2},2{e^{ - {1 \over 4}}}]\) D: \([2{e^2},2{e^ { { 1 \over 4}}}]\)
下面代码的输出结果是vlist = list(range(5))for e in vlist: print(e,end=",") A: 0 1 2 3 4 B: 0,1,2,3,4, C: [0, 1, 2, 3, 4] D: 0;1;2;3;4;
下面代码的输出结果是vlist = list(range(5))for e in vlist: print(e,end=",") A: 0 1 2 3 4 B: 0,1,2,3,4, C: [0, 1, 2, 3, 4] D: 0;1;2;3;4;