A: \([ - 2{e^2}, - 2{e^{ - {1 \over 4}}}]\)
B: \([ - 2{e^2}, - 2{e^ { { 1 \over 4}}}]\)
C: \([2{e^2},2{e^{ - {1 \over 4}}}]\)
D: \([2{e^2},2{e^ { { 1 \over 4}}}]\)
举一反三
- 利用性质6(估值定理)估计积分\(\int_2^0 { { e^ { { x^2} - x}}} dx\)的值为( )。 A: \([ - 2{e^2}, - 2{e^{ - {1 \over 4}}}]\) B: \([ - 2{e^2}, - 2{e^ { { 1 \over 4}}}]\) C: \([2{e^2},2{e^{ - {1 \over 4}}}]\) D: \([2{e^2},2{e^ { { 1 \over 4}}}]\)
- 下列广义积分中()是收敛的。 A: \( \int_0^1 { { 1 \over { { x^2}}}dx} \) B: \( \int_{ - {\pi \over 4}}^ { { \pi \over 4}} { { 1 \over { { {\sin }^2}x}}dx} \) C: \( \int_0^{ + \infty } { { e^x}dx} \) D: \( \int_0^{ + \infty } { { 1 \over {1 + {x^2}}}dx} \)
- 下列四个积分中,()是广义积分。 A: \( \int_0^2 { { 1 \over { { {(3 - x)}^2}}}dx} \) B: \( \int_0^6 { { {(x - 4)}^{ - {2 \over 3}}}dx} \) C: \( \int_0^1 { { 1 \over {1 + {x^2}}}dx} \) D: \( \int_1^2 { { 1 \over { { x^2}}}dx} \)
- 下列积分中()不是广义积分。 A: \( \int_0^1 { { x \over {\sqrt {1 - {x^2}} }}dx} \) B: \( \int_0^2 { { 1 \over { { {\left( {1 - x} \right)}^2}}}dx} \) C: \( \int_0^1 { { 1 \over { { x^2}}}dx} \) D: \( \int_0^1 { { 1 \over { { x^2} - 4}}dx} \)
- 球面 \(x^2 + {y^2} + {z^2} = {a^2}\)含在圆柱面\({x^2} + {y^2} = ax\) 内部的那部分面积为 ( ) A: \(4{a^2}({\pi \over 2} - 1)\) B: \(4{a^2}({\pi \over 3} - 1)\) C: \(4{a^2}({\pi \over 2} + 1)\) D: \(4{a^2}({\pi \over 3} + 1)\)
内容
- 0
$\int {{1 \over {3 + 5\cos x}}} dx = \left( {} \right)$ A: ${1 \over 4}\ln \left| {{{2\cos x + \sin x} \over {2\cos x - \sin x}}} \right| + C$ B: ${1 \over 4}\ln \left| {{{2\cos {x \over 2} + \sin {x \over 2}} \over {2\cos {x \over 2} - \sin {x \over 2}}}} \right| + C$ C: $\ln \left| {{{\cos {x \over 2} + \sin {x \over 2}} \over {\cos {x \over 2} - \sin {x \over 2}}}} \right| + C$ D: $\ln \left| {{{\cos x + \sin x} \over {\cos x - \sin x}}} \right| + C$
- 1
$\int {{{x\cos x} \over {{{\sin }^3}x}}} dx = \left( {} \right)$ A: $ - {x \over {2{{\sin }^2}x}} - {1 \over 2}\tan x + C$ B: $ - {x \over {2{{\sin }^2}x}} - {1 \over 2}\cot x + C$ C: $ - {x \over {2{{\cos }^2}x}} - {1 \over 2}\cot x + C$ D: $ - {x \over {2{{\cos }^2}x}} - {1 \over 2}\tan x + C$
- 2
若\( \int {f(x)dx = {x^2} + C} \),则\( \int {xf(1 - {x^2})dx = } \)( ) A: \( 2{(1 - {x^2})^2} + C \) B: \( - {1 \over 2}{(1 - {x^2})^2} + C \) C: \( {1 \over 2}{(1 - {x^2})^2} + C \) D: \( - 2{(1 - {x^2})^2} + C \)
- 3
下列广义积分发散的是( )。 A: \( \int_0^{ + \infty } { { e^{ - x}}dx} \) B: \( \int_0^1 { { x \over {\sqrt {1 - {x^2}} }}dx} \) C: \( \int_0^2 { { 1 \over { { {\left( {1 - x} \right)}^2}}}dx} \) D: \( \int_0^1 { { 1 \over {\sqrt {1 - x} }}dx} \)
- 4
设方阵\(A\)满足\({A^2} - A - 2E = O\),则\({A^{ - 1}} = \) A: \({1 \over 3}(A - E)\) B: \({1 \over 2}(A+ E)\) C: \({1 \over 2}(A - E) \) D: \((A - E) \)